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OVERVIEW OF BIAS IN ML AND Al



Bias in Machine Learning Algorithms

Taking human decisions out
of the process was supposed
to make things more fair...

...but often it hasn’t

=> What went wrong??




Racial Bias: Bail and Parole Algorithms
The “Solution”: ML says who gets bail or parole

COMPAS Algorithm:
RISK = AGE * Weight 1
+ AGE AT FIRST ARREST * Weight 2
+ HISTORY OF VIOLENCE * Weight 3
+ EDUCATION LEVEL * Weight 4
+ HISTORY OF NONCOMPLIANCE * Weight 5

The Problem: using the algorithm
results in the exact same bias




Gender Bias: Amazon Resume Screening

The “Solution”: ML picks top resumes

Amazon Algorithm:

Resume Quality = ? + ?2 + 2 +?2 + ? ...

Image Credit: flazingo photos - CC BY-SA 2.0

The Problem: the algorithm is
biased against women applicants

PEACE-WORK


https://www.flickr.com/photos/124247024@N07
https://creativecommons.org/licenses/by-sa/2.0/?ref=ccsearch&atype=rich

ROOT CAUSES OF BIAS



Root Causes of Bias: Selection Bias
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=> Biased Training Population = Biased Results



Root Causes of Bias: The History Problem
ML replaces human decision making

library(tensorflow)

library(keras)

model <- keras_model_sequential() %>%
layer_conv_2d(filters = 32,

. _ L kernel_size = ¢(3,3), activation = "relu",
Image Credit: David Davies -CC BY-SA 2.0

The algorithm is trained using
earlier, biased human decisions



https://www.flickr.com/photos/44124390461@N01
https://creativecommons.org/licenses/by-sa/2.0/?ref=ccsearch&atype=rich

Root Causes of Bias: Spaghetti Problem

Hundreds or even thousands
of potential predictors

DATA DICTIONARY

Algorithm trained uncritically
using “anything that sticks”

Image Credit: snackdinner.com

=> Biased Predictors = Biased Outcome




STATISTICAL MEASURES OF BIAS




Measuring Bias: Disparate Impact
Example: COVID-19 Initial Mortality

BIPOC Mortality Rate by Population Quintile - Phase 1

g 200

8 1450 %
i 150

g 100 .78

e

AT

1 2 3 4 5 ]

BIPOC % of Population - US Counties by Quintée \
Increasing BIPOC % «>)

2

\\4(/ /

\\/é

ANK. /AN
AL




Measuring Bias: Disparate Impact

Odds Ratios for demographic factors compare highest % prevalence (60%+) vs. lowest (<5%)

Black / African American 1
Cardiovascular Disease

Chronic Lung Disease

Prison Populations

ndigenous

Poverty (High % Below Poverty Line)

High Population Density

Prison numbers compared to overall US population. Reported by Saloner et al, COVID-19
Cases and Deaths in Federal and State Prisons, JAMA, August 11, 2020
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Measuring Bias: Fairlearn Algorithm

Not race African American race African American Difference
Not Recid 0.14 0.14
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Confusion matrices for African-American defendants vs rest, and difference, for Fairlearn-adjusted model

Disparity in predictions
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DESIGNING AGAINST BIAS IN ML AND Al



Disparity in predictions
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Designing Against Bias: Fairlearn

0.5 0.55 0.6 0.65 0.7 0.75 0.8

Accuracy

0.85



Designing Against Bias:
Bias-Minimized Comparison Algorithm

Develop a new predictive algorithm

Create a second model - the BMCA - by
removing predictors that might confer bias

Test the new model against the BMCA to
estimate the amount of bias in any
variables causing concern
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CONCLUSIONS



Best Practices for Design to Minimize Bias
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Parsimonious Models
Screen all predictors for bias
Transparent Methods, not Black Box

Develop the model using new outcomes
screened for bias - not past human decisions

Test for bias w/ FairLearn, BCMA, etc.

Present using Odds Ratios or Relative Rlsk

Open Source the data and algorithm
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