Modeling Dynamic Processes with Panel Data: An Application of Continuous Time Models to Prevention Research

Pascal R. Deboeck¹, David A. Cole², Kristopher J. Preacher², Rex Forehand³, and Bruce E. Compas²

> Modern Modeling Methods 2023 University of Connecticut June 27, 2023

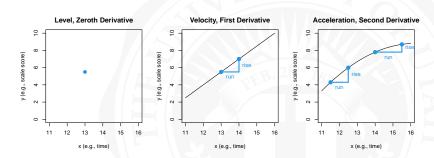
¹University of Utah, ²Vanderbilt University, ³University of Vermont

 Continuous Time Models and Prevention/Intervention Research²

²Deboeck, P. R., Cole, D. A., Preacher, K. J., Forehand, R. & Compas, B. E. (2021). Modeling Dynamic Processes with Panel Data: An Application of Continuous Time Models to Prevention Research. International Journal of Behavioral Development, 45(1), 28–39.

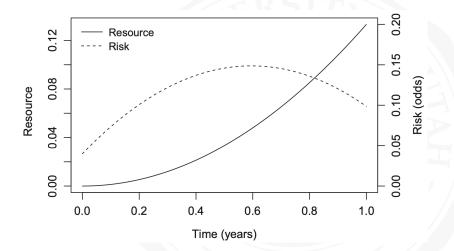
- Continuous Time Models and Prevention/Intervention Research²
- Open Systems: Dynamic/Process Errors change your model

²Deboeck, P. R., Cole, D. A., Preacher, K. J., Forehand, R. & Compas, B. E. (2021). Modeling Dynamic Processes with Panel Data: An Application of Continuous Time Models to Prevention Research. International Journal of Behavioral Development, 45(1), 28–39.


- Continuous Time Models and Prevention/Intervention Research²
- Open Systems: Dynamic/Process Errors change your model
- Dynamical Systems: Mean differences are not enough

²Deboeck, P. R., Cole, D. A., Preacher, K. J., Forehand, R. & Compas, B. E. (2021). Modeling Dynamic Processes with Panel Data: An Application of Continuous Time Models to Prevention Research. International Journal of Behavioral Development, 45(1), 28–39.

- Continuous Time Models and Prevention/Intervention Research²
- Open Systems: Dynamic/Process Errors change your model
- Dynamical Systems: Mean differences are not enough
- Substantive Example: What are the hallmark(s) of a successful intervention?


²Deboeck, P. R., Cole, D. A., Preacher, K. J., Forehand, R. & Compas, B. E. (2021). Modeling Dynamic Processes with Panel Data: An Application of Continuous Time Models to Prevention Research. International Journal of Behavioral Development, 45(1), 28–39.

Derivatives

• Relations between derivatives, Differential equations

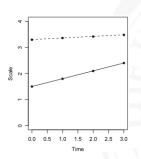
Differential Equations Modeling

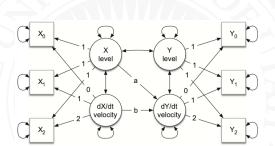
Open Systems

• Closed Systems, Open Systems

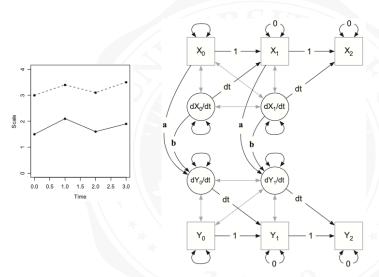
Open Systems

- Closed Systems, Open Systems
- Dynamic/Process Errors

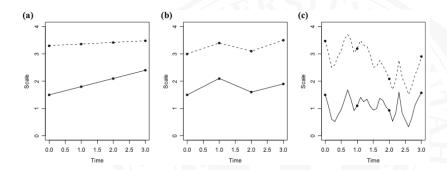


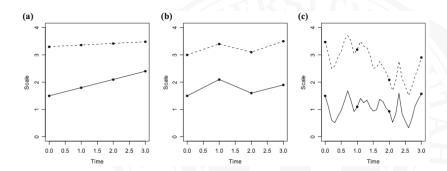

Open Systems

- Closed Systems, Open Systems
- Dynamic/Process Errors
- Continuum of models

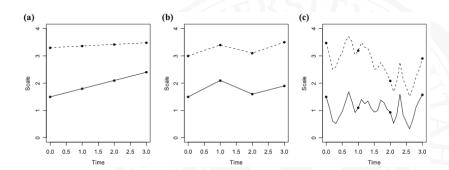


Small Dynamic Errors

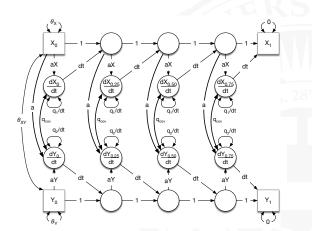



Moderate Dynamic Errors

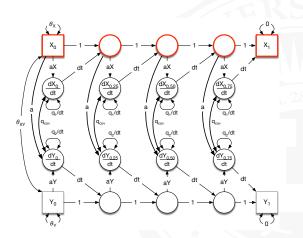
Frequent Dynamic Errors


Frequent Dynamic Errors

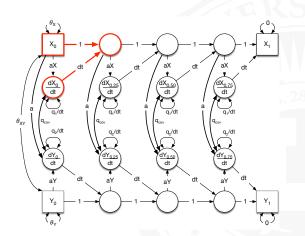
• Changes are frequent relative to sampling rate

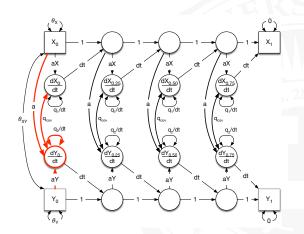


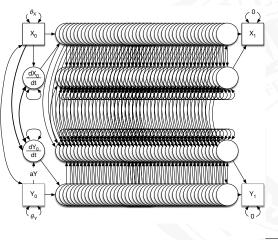
Frequent Dynamic Errors



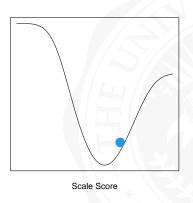
- Changes are frequent relative to sampling rate
- Ongoing interaction between constructs
- Stochastic Differential Equations

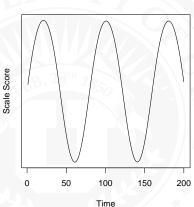




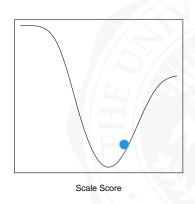

 Constructs exist between observed values

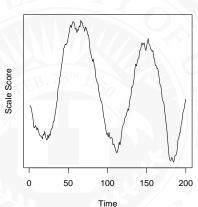
- Constructs exist between observed values
- Value is equal to the prior value plus change

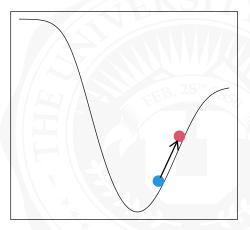

- Constructs exist between observed values
- Value is equal to the prior value plus change
- Change is defined (stochastic perturbations, correlated change, differential equation modeling)



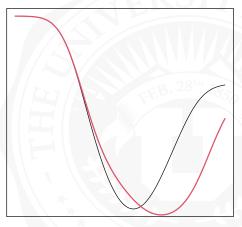
- Constructs exist between observed values
- Value is equal to the prior value plus change
- Change is defined (stochastic perturbations, correlated change, differential equation modeling)
- Number of intermediate latent occasions goes to infinity^a


alnSDE; Deboeck & Boulton, 2016 oc


Attractor Dynamics

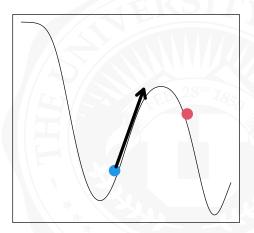


Attractor Dynamics

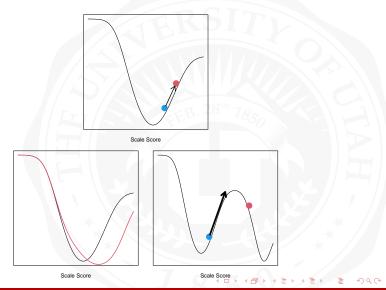


Producing A Change in Mean Score

Scale Score


Producing A Change in Mean Score

Scale Score


Producing A Change in Mean Score

Scale Score

What is the effect of an intervention?

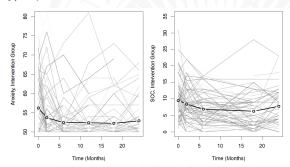
Reading Intervention

- Frequent Dynamic Errors (SDEs)
- Changing/Different Attractors (Differential Equations)

pascal@psych.utah.edu intraindividual.com

³Compas, B. E. et al., 2009, 2010, 2011, 2015

Reading Intervention


- Frequent Dynamic Errors (SDEs)
- Changing/Different Attractors (Differential Equations)
- Efficacy of a cognitive-behavioral preventive intervention for children of parents with a history of depression³
- Active intervention consisted of a 12-session program (8 weekly sessions, 4 month booster) teaching children skills to cope with stress related to their parents' depression
- n = 122 active intervention, n = 120 control group

pascal@psych.utah.edu intraindividual.com

³Compas, B. E. et al., 2009, 2010, 2011, 2015 \bigcirc

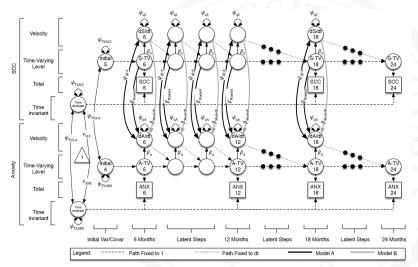
Reading Intervention

- Data were collected at 6 times: baseline (before the intervention) and 2, 6, 12, 18 and 24 months after baseline.
- Children's reports of secondary control coping (SCC)⁴, and anxiety/depression⁵

⁴Compas, Connor, Osowiecki, & Welch, 1997; Compas, Connor, Saltzman, Thomsen, & Wadsworth, 1999

⁵Achenhach 1991

• Initially, a random-intercept model was fit separately for anxiety/depression (four observations, n = 192) and SCC (three observations, n = 187)


- Initially, a random-intercept model was fit separately for anxiety/depression (four observations, n=192) and SCC (three observations, n=187)
- The random intercept-only models fit the data relatively well and seem to be a reasonable approximation of the trajectories between 6 and 24 months (*CFI_{ANX}* = .978, *RMSEA_{ANX}* = .062; *CFI_{SCC}* = .962, *RMSEA_{SCC}* = .079)

- Initially, a random-intercept model was fit separately for anxiety/depression (four observations, n = 192) and SCC (three observations, n = 187)
- The random intercept-only models fit the data relatively well and seem to be a reasonable approximation of the trajectories between 6 and 24 months (*CFI_{ANX}* = .978, *RMSEA_{ANX}* = .062; *CFI_{SCC}* = .962, *RMSEA_{SCC}* = .079)
- The random intercepts capture the steady-state, time-invariant differences between individuals
- Does not describe how individuals vary around their individual intercepts

- Initially, a random-intercept model was fit separately for anxiety/depression (four observations, n = 192) and SCC (three observations, n = 187)
- The random intercept-only models fit the data relatively well and seem to be a reasonable approximation of the trajectories between 6 and 24 months (*CFI_{ANX}* = .978, *RMSEA_{ANX}* = .062; *CFI_{SCC}* = .962, *RMSEA_{SCC}* = .079)
- The random intercepts capture the steady-state, time-invariant differences between individuals
- Does not describe how individuals vary around their individual intercepts
- Random mean model, SDE, two-group SEM

Substantive Models

Results

- AIC/BIC did not show a clear preference for one model over the other
- Random mean anxiety/depression lower in intervention group, and less variance (both models)

Madal A (laval valacion)

Results

Model A (level-velocity)				
Readings	Group Diff	S.E. Diff	p Value	
55.50	-2.82	0.78	.000	
7.84	-0.89	0.71	.208	
33.08	-22.29	7.60	.003	
20.30	-10.85	6.58	.099	
14.96	-8.86	5.11	.083	
15.39	-5.50	5.59	.326	
-0.09	1.89	3.95	.632	
12.54	4.59	6.54	.483	
-1.43	0.60	0.63	.342	
-1.69	1.03	0.89	.244	
-0.82	1.17	0.90	.195	
_	_	_	_	
78.02	-53.55	3.22	.021	
39.59	-10.36	7.34	.550	
36.12	-31.39	5.35	.041	
	55.50 7.84 33.08 20.30 14.96 15.39 -0.09 12.54 -1.43 -1.69 -0.82 	55.50	55.50	

pascal@psych.utah.edu

Results

Model B (velocity-velocity)

Parameter				
	Readings	Group Diff	S.E. Diff	p Value
Random effects (time-invariant)				
Mean anxiety/depression (ν_{ANX})	55.49	-2.83	0.79	.000
Mean SCC (ν_{SCC})	7.80	-0.79	0.71	.267
Variance anxiety/depression ($\psi_{TI,ANX}$)	33.32	-22.88	8.15	.005
Variance SCC ($\psi_{TI,SCC}$)	20.94	-8.29	6.56	.206
Covariance anxiety, SCC ($\psi_{TI,S-A}$)	14.93	-5.64	4.83	.243
TV initial covariance				
Variance anxiety/depression ($\psi_{TV,ANX}$)	25.30	-12.68	9.17	.166
Variance SCC ($\psi_{TV,SCC}$)	-11.50	9.09	6.26	.146
Covariance anxiety/depression, SCC ($\psi_{TV,S-A}$)	13.03	2.40	5.22	.646
Derivative relations				
Anxiety/depression level-velocity (β_A)	-1.55	0.84	0.69	.225
SCC level–velocity (β_s)	-9.30	8.27	19.45	.671
SCC level to anxiety/depression velocity	_	_	_	_
(β_{ModelA})				
SCC velocity to anxiety/depression velocity	0.90	-0.72	0.28	.010
(β_{ModelB})				
Stochastic perturbations				
Variance anxiety/depression (ψ_{qA})	45.29	-21.75	15.29	.155
Variance SCC (ψ_{qS})	182.52	-147.28	356.9	.680
Covariance anxiety/depression, SCC (ψ_{qS-A})	_	_	_	_

- Open Systems: Dynamic/Process Errors change your model
 - Continuum of models (LGCM, LCS, SDE)
 - Frequent dynamic errors and ongoing interactions: SDEs

- Open Systems: Dynamic/Process Errors change your model
 - Continuum of models (LGCM, LCS, SDE)
 - Frequent dynamic errors and ongoing interactions: SDEs
- Dynamical Systems: Mean Differences are not enough
 - Attractor Dynamics, Changes in Means, Differential Equations

- Open Systems: Dynamic/Process Errors change your model
 - Continuum of models (LGCM, LCS, SDE)
 - Frequent dynamic errors and ongoing interactions: SDEs
- Dynamical Systems: Mean Differences are not enough
 - Attractor Dynamics, Changes in Means, Differential Equations
- Substantive Example: What are the hallmark(s) of a successful intervention?
 - Standard 2-group intervention, few post-intervention observations
 - Different underlying dynamic processes with limited data

- Open Systems: Dynamic/Process Errors change your model
 - Continuum of models (LGCM, LCS, SDE)
 - Frequent dynamic errors and ongoing interactions: SDEs
- Dynamical Systems: Mean Differences are not enough
 - Attractor Dynamics, Changes in Means, Differential Equations
- Substantive Example: What are the hallmark(s) of a successful intervention?
 - Standard 2-group intervention, few post-intervention observations
 - Different underlying dynamic processes with limited data
 - Intervention may have affected more than the mean and variance of individual means
 - Relations within constructs, stochastic perturbations, different coupled relations between variables

pascal@psych.utah.edu intraindividual.com

- Paper: Deboeck, P. R., Cole, D. A., Preacher, K. J., Forehand, R. & Compas, B. E. (2021). Modeling Dynamic Processes with Panel Data: An Application of Continuous Time Models to Prevention Research. International Journal of Behavioral Development, 45(1), 28–39.
- Derivatives Language: Deboeck, P. R., Nicholson, J. S., Kouros, C., Little, T. D., & Garber, J. (2015). Integrating developmental theory and methodology: Using derivatives to articulate change theories, models, and inferences. Applied Developmental Science, 19. 217–231.
- SDEs: Deboeck, P. R., & Boulton, A. J. (2016). Integration of stochastic differential equations using structural equation modeling: A method to facilitate model fitting and pedagogy. Structural Equation Modeling, 23, 888–903.