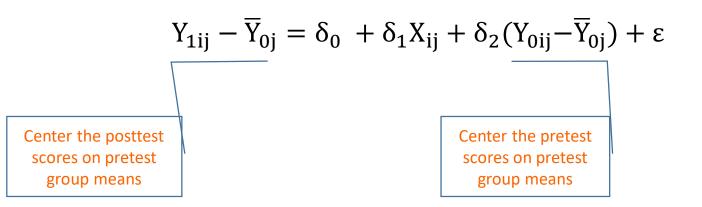
Does Group-Mean Centering Always Inflate Type I Error Rates in Multiple Regression?

Hua Lin, B. Wade Brorsen, & Robert E. Larzelere Oklahoma State University MMM Conference, June 28, 2023

Challenges in Estimating Treatment Effects


B. Wade Brorsen Hua Lin Robert Larzelere

ANCOVA with Dual-Centered Data

Proposed solution to Lord's Paradox:

- Dual-Centered ANCOVA
- Extension of Huitema's Quasi-ANCOVA

Results Using Dual-Centered Data

	Difference Scores		Residualized Change Score		
Data	d_l	t(d1)	b_1	<u>t(</u> b ₁)	
Lord's example	-0.01	-0.01	-0.01	-0.01	
Reversed	15.61***	16.17	15.61***	18.76	
Sex costs talk	-0.08**	-2.77	-0.08***	-3.43	More
Reasoning	-0.03*	-2.35	-0.03*	-2.73	Power?
Hospitalization	0.16***	3.81	0.17***	4.91	OR Inflated

TreatmentOutcomeSex costs talk \rightarrow Unprotected sexReasoning \rightarrow Child aggressionHospitalization \rightarrow Physical health

Possible Advantages of Dual-Centered ANCOVA

Four possible advantages (when diffs-in-diffs is warranted):

- 1. Yields consistent results when Lord's paradox applies
- 2. Estimates pure within-person effects
- 3. Can it provide more power than standard difference-score analyses?
- 4. Can test Pretest X Treatment interactions within difference-score analysis

Lord's paradox applies to most longitudinal analyses

Wade Brorsen's Analysis: Goals

- Explain why Quasi-Ancova standard errors are too low
- What to do about endogenous treatment effects

A Common Language

- Anova
- Ancova
- Differences
- Quasi-Ancova
- Dual-Centered Ancova

Analysis of Variance (Anova)

(1)
$$Y_{ij1} = \beta_0 + \beta_1 X_j + \varepsilon_{ij}$$

where Y_{ij1} is posttest score of *i*th person receiving *j*th

treatment, X_j is an indicator variable for the *j*th treatment

(j = 1, 2).

Differences Model

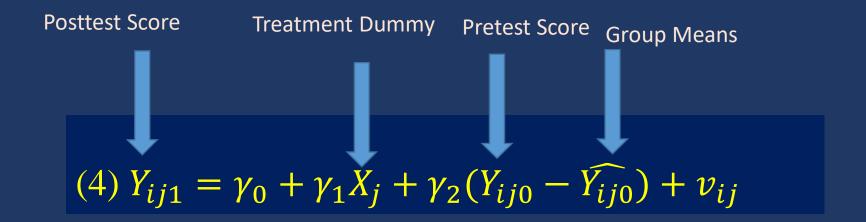
(2) $Y_{ij1} - Y_{ij0} = \delta_0 + \delta_1 X_j + \vartheta_{ij}$

•

where Y_{ij0} is the pretest score.

Analysis of Covariance (Ancova)

(3) $Y_{ij1} = \alpha_0 + \alpha_1 X_j + \alpha_2 Y_{ij0} + v_{ij}$.


Problems

- The choice of model can dictate the answer
- Endogenous treatment effects

Monte Carlo Study (Lin, 2022)

	Treatment		MC SD	
Name	Effect	SE		MSE
Anova	-0.0002	0.948	0.998	224.8
ANCOVA	-0.0068	0.413	0.411	42.7
Quasi-				
ANCOVA	-0.0002	0.413	0.998	42.7

Quasi-Ancova

Quasi-Ancova

 $(4)Y_{ij1} = \gamma_0 + \gamma_1 X_j + \gamma_2 (Y_{ij0} - \hat{Y_{ij0}}) + v_{ij}$

 $(5)Y_{ij0} = \varphi_0 + \varphi_1 X_j + \tau_{ij}$

Possibilities

Generated Regressor Problem

Two-Stage Least Squares (IV)

Calculate coefficients using predictions

Calculate standard errors using actuals

Quasi-Ancova

$(4)Y_{ij1} = \gamma_0 + \gamma_1 X_j + \gamma_2 (Y_{ij0} - \widehat{Y_{ij0}}) + v_{ij}$ $(5)Y_{ij0} = \varphi_0 + \varphi_1 X_j + \tau_{ij}$

Quasi-Ancova gives same estimate and same standard errors as Anova when standard errors are adjusted for generated regressors

Quasi-Ancova
(4)
$$Y_{ij1} = \gamma_0 + \gamma_1 X_j + \gamma_2 (Y_{ij0} - \widehat{Y_{ij0}}) + v_{ij}$$

(5) $Y_{ij0} = \varphi_0 + \varphi_1 X_j + \tau_{ij}$

The added term is the error from the second equation. Both have same regressors, so no gain in using seemingly unrelated regression.

Dual-Centered Ancova

$$(8)Y_{ij1} - \overline{Y}_{j0} = \omega_0 + \omega_1 X_j + \gamma_2 (Y_{ij0} - \widehat{\mu}_j) + \nu_{ij}$$

(9)
$${}^{\scriptscriptstyle (5)}Y_{ij0} = \mu_j + \tau_{ij}^{Y_{ij0} = \varphi_0 + \varphi_1 X_j + \tau_{ij}}$$

Dual-centered Ancova is the same as the differences model.

Endogenous Treatment Effects

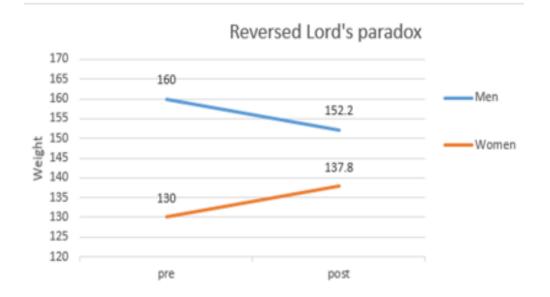
- Spanking
- Obesity
- Depression
- Preventive antibiotics in feedlot

Endogenous Treatment Effects

- Randomized controlled trials
- Instrumental variables
- Matching
- Lewbel approach
- FIML with sample selection

Metaphylaxis

- Treated cattle have worse outcomes
- Treatments effective in experiments
- Propensity score still negative
- Lewbel (2012) can give zero effect (after pretesting)
- Need better selection variables


Quasi-Ancova is same as Anova

• Dual-Centered Ancova is same as Differences approach

Endogenous treatment effects- no clear answer

Graphical Explanation

Null Hypothesis for ANCOVA

When Does Group-Mean Centering Bias *se*'s of Tx Effects?

- Pagan (1984, International Economic Review) Generated regressors
- Multilevel modeling case (His Model 4)
 - Standard errors are correct at Level 1
 - Standard errors are biased at Level 2
- Do his conclusions apply only to OLS regression on Level 2 alone?
- Do multilevel modeling programs correct for this bias?
- Brorsen: Need 2SLS or Instrumental Variable approaches or maximum likelihood to get the correct standard errors.

Initial Simulation (Hua Lin)

 Still working on simulating Multilevel Modeling to test whether Pagan (1984) is correct that se's are biased for treatment effects at Level 2

Acknowledgements

- Expert consultation help from
 - Dave Kenny
 - Joshua Habiger
 - Tianyu Cao
 - Isaac Washburn
 - Brad Huitema
- Funding from
 - NICHD grant #5 R03 HD107307
 - OK State Univ. Parenting Professorship
- Help clarify this issue? Hua.lin@okstate.edu