

Synthetic Control Methods for Causal Inference in Observational Social and Behavioral Sciences

John M. Felt, Ph.D.

Assistant Research Professor Center for Healthy Aging The Pennsylvania State University

Talk presented for Modern Modeling Methods Conference University of Connecticut June 28^{th} , 2023

John M. Felt, Ph.D.

3

イロト イボト イヨト イヨト

Acknowledgements

- Collaborators
 - ▶ Chad Shenk
 - Kenneth Shores
 - ► Zack Fisher
 - ▶ Nilam Ram
 - ▶ Ulziimaa Chimed-Ochir
 - ▶ Anneke Olson

3

イロト イボト イヨト イヨト

Outline

Causal Inference in Observational Research

Synthetic Control Methods (SCMs)

SCMs with Staggered Adoption

Child Maltreatment and SCMs

Future Directions

э

・ロト ・日ト ・モト・モート

Intro	SCMs	SCMs with SA	CM and SCMs	Future Directions
$\bullet \circ$	000000	0000	000000	

Causality

Ð

$_{\circ}^{\mathrm{Intro}}$	SCMs 000000	SCMs with SA 0000	CM and SCMs 000000	Future Directions

Difference-in-Differences

John M. Felt, Ph.D.

5/24

The Synthetic Control Method¹

The Synthetic Control Method

John M. Felt, Ph.D.

$$\min_{\mathbf{W}} \sum_{i=1}^{n} \frac{(Y_{it} - \sum_{j=1}^{p} W_j X_{jt})^2}{V_{it}} \quad \text{subject to} \quad \sum_{j=1}^{p} W_j = 1, \quad W_j \ge 0$$

 \boldsymbol{n} is the number of time periods

p is the number of control units

 Y_{it} is the outcome variable of interest for the treated unit i at time t

 X_{jt} is a vector of pre-treatment characteristics for control unit j at time t

 V_{it} is a weight or variance term that represents the measurement error or uncertainty in the outcome variable Y_{it} $\mathbf{W} = (W_1, W_2, \dots, W_p)$ is a vector of weights assigned to the control units.

イロッ 不可 アイビア イビア マクタウ

The Synthetic Control Method

SCM

Intro SCMs		SCMs with SA	CM and SCMs	Future Directions
00 000000		0000	000000	

$$SATT = \frac{\sum_{t=t_1+1}^{T} w_{j,t}(Y_{j,t} - \bar{Y}t) - \sum_{t=t_1+1}^{T} w_{i,t}(Y_{i,t} - \bar{Y}t)}{\hat{\sigma}\epsilon},$$

 $Y_{i,t}$ is the observed outcome for the treated unit *i* at time $t Y_{j,t}$ is the observed outcome for the control unit *i* at time $t w_{j,t}$ is the weight assigned to control unit *j* at time t \bar{Y}_t is the average outcome for all units at time *t* in the pre-treatment period

 $\hat{\sigma}_{\epsilon}$ is the estimated residual variance, which is typically calculated based on the pre-treatment period.

イロッ 不可 アイビア イビア マクタウ

Intro SCMs SCMs with SA CM and SCMs Fu oo 00000 0000 0000 00000 00000 00000

Data Requirements for SCM

ID	Time	Ever Treat	When Treat
1	1	1	0
1	2	1	0
1	3	1	1
1	4	1	1
2	1	0	0
2	2	0	0
2	3	0	0
2	4	0	0
3	1	1	0
3	2	1	1
3	3	1	1
3	4	1	1

<ロト <回ト < 三ト < 三ト

 $_{\rm SCM}$

Synthetic Controls with Multiple Treated Units²

- Also referred to as the Partially Pooled Synthetic Control Method
- ► Takes into account the imbalance for each treated united separately and the imbalance for the average of the treated units
- ► This partially pooled SCM generates weights to balance both of these sources of error
- ► Includes an intercept shift to account for average pre-exposure differences

SCM

²Ben-Michel, Feller, & Rothstein (Working Paper) $\rightarrow \langle \square \rangle \rightarrow \langle \square \rangle \rightarrow \langle \square \rangle$ John M. Felt, Ph.D.

Partially Pooled SCMs

Construct a synthetic control group for each unit using pre-treatment data up to the time of adoption. Let \mathbf{W}_{it} be the weights assigned to each control unit for the synthetic control group of treated unit i at time t.

$$\mathbf{X}it = \sum j = 1^N \mathbf{W}ijt\mathbf{X}jt$$

 \mathbf{X}_{it} is a vector of pre-treatment characteristics for treated unit i at time t

 \mathbf{X}_{jt} is a vector of pre-treatment characteristics for control unit j at time t

 ${\cal N}$ is the number of control units

イロト イロト イヨト イヨト ヨー のくや

Partially Pooled SCMs

Estimate the treatment effect for each unit at the time of adoption using the difference between the observed outcome and the predicted outcome from the synthetic control group:

$$\mathrm{TE}i = Yi, t_i - \mathbf{X}i, t_i^{\top} \mathbf{W}it_i$$

 Y_{i,t_i} is the observed outcome for treated unit i at the time of adoption t_i

 X_{i,t_i} is the observed outcome for the control unit i at the time of adoption t_i

 \mathbf{W}_{it_i} is the vector of weights assigned to each control unit for the synthetic control group of treated unit *i* at time t_i

イロト イロト イヨト イヨト ヨー のくや

Partially Pooled SCMs

Combine the estimates of treatment effects across units using a weighted average:

$$ATT = \frac{\sum_{i=1}^{M} TEi \cdot w_i}{\sum_{i=1}^{M} i = 1^{M} w_i}$$

 TE_i is the estimated treatment effect for treated unit i w_i is the weight assigned to treated unit iM is the number of treated units.

3

イロト イボト イヨト イヨト

- Child maltreatment is a worldwide health concern consisting of abuse (physical, emotional, and sexual) and neglect.
- ▶ More likely to develop externalizing behavior problems such as aggression³
- Control groups have typically been created through demographic matching with children who have never been maltreated

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

³Cicchetti & Valentino (2006)

Child Maltreatment and LONGSCAN

- Multisite multiyear study of child maltreatment (N = 1354)
- Substantiated maltreatment and externalizing behavior problems measured every 2 years from age 4 to 16
- ▶ Repeated assessments make SCMs an ideal method

John M. Felt, Ph.D.

・ロト ・ 同ト ・ ヨト ・ ヨト

Data Requirements for SCM

- ► For SCMs, including partially pooled for staggered adoption, requires repeated measures prior to maltreatment
- ► Data restricted to those with at least 3 pre-maltreatment times (N = 63)
- ▶ N = 571 children in control group

イロト イボト イヨト イヨト

$_{\rm 00}^{\rm Intro}$	SCMs 000000	SCMs with SA 0000	$\begin{array}{c} \text{CM and SCMs} \\ \text{000000} \end{array}$	Future Directions

Results

TimeSince	ATT	SE	CIL	CIU
0	3.06	1.74	-0.35	6.35
2	5.91	1.87	2.65	9.80
4	3.49	1.80	-0.03	7.03
6	6.27	2.93	0.36	12.00

Average ATT (of post intervention times) = 4.652 (SE = 1.70)

《口》 《圖》 《注》 《注》

$_{\rm 00}^{\rm Intro}$	SCMs 000000	SCMs with SA 0000	CM and SCMs oooo⊙o	Future Directions

Results

John M. Felt, Ph.D.

Weights

1	V17 [‡]	V18 [‡]	V19 [‡]	V20 [‡]	V21 [‡]	V22 [‡]	V23 [‡]
EA40015	-3.909506e-08	0.0012600979	0.0074696094	1.790062e-02	3.799893e-05	0.0004148545	0.0001107647
EA40056	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000
EA40091	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000
EA40129	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000
EA40157	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000
EA40185	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	7.232834e-04	0.0000000000	0.0000000000
EA40190	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000
EA40247	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000
EA40251	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000
EA40304	-9.826916e-08	0.0028835375	0.0013200143	6.203384e-04	3.466743e-04	0.0006975510	0.0010110625
EA40312	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000
EA40353	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000
EA40399	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000
EA40401	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000
EA40414	1.790066e-01	0.0000000000	0.0000000000	3.091038e-04	0.000000e+00	0.0000000000	0.0000000000
EA40436	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000
EA40450	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000
EA40469	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000
EA40475	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000
EA40497	0.000000e+00	0.0000000000	0.0000000000	0.000000e+00	0.000000e+00	0.0000000000	0.0000000000

John M. Felt, Ph.D.

イロト イロト イヨト イヨト

Future Considerations

\blacktriangleright Methodological

- Number of times preand post- exposure
- Strength of average effect
- Heterogeneity in effect across persons
- ▶ Number of control units

- Child Maltreatment
 - More Assessments
 Earlier in Development
 - Handling "Contamination"

イロト イボト イヨト イヨト

John M. Felt, Ph.D.

クへで 22/24

3

References

- Abadie et al. (2010): Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of American Statistical Association
- Ben-Michael, Feller, Rothstein (Working Paper). Synthetic Controls with Staggered Adoption.
- ► Ben-Michael, Feller, Rothstein (2021). The Augmented Synthetic Control Method. *Journal of the American* Statistical Association
- ▶ Kim, Lee, & Gupta (2020). Bayesian Synthetic Control Methods. Journal of Marketing Research
- ► Shadish, Cook, & Campbell (2002). Experimental and Quasi Experimental Designs for Generalized Causal Inference

Future Directions 000

John M. Felt, Ph.D.