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Background

• Dissertation was on a method called Analysis of Symmetrically 
Predicted Endogenous Subgroups (ASPES).

• ASPES came from the evaluation literature (Peck, 2003; Peck, 2013) and 
has been called a “cousin” of principal stratification. 

• It leverages random assignment of an intervention in order to identify 
average causal effects for each level of a post-random assignment 
(endogenous) variable of interest that was only observed in one group 
(e.g., compliance, quality of implementation). 



Setting

• Let’s call this post-treatment variable M since it is an intermediate 
variable. If it had observations in both the treatment and control 
groups, we could treat it as a causal mediator. 

• However, when M is only observable in one group, it’s impossible 
to treat it as a causal mediator because we have no information on 
one of the potential mediators (M0 or M1).

• Let’s imagine M is a measure of implementation quality in the 
treatment group. 



If M is discrete (e.g., low vs. high quality)…

• ASPES very much resembles well known methods of estimating 
principal stratum causal effects such as the complier average causal 
effect (CACE). 

• Peck (2003) nonparametrically identified analogues to the CACE and 
NACE that can be estimated by ASPES. 

• ASPES accomplishes this identification via a mean independence 
assumption, which I argue is best thought of as an exclusion restriction 
(ER) assumption, because it requires an instrumental variable.



If M is discrete (e.g., low vs. high quality)…

• ASPES essentially uses an instrument, V, for the interaction effect 
between treatment assignment (T) and M on the outcome, Y. 

• The assumption used in ASPES ends up being mathematically 
equivalent to an assumption that there is no interaction effect between 
the chosen instrument and treatment assignment on the outcome.

• I call this the “interaction exclusion restriction” (IER) assumption 
because it is equivalent to using T*V as an instrument for T*M, requiring 
the usual ER assumption on the effect of TV on Y. 



If M is discrete (e.g., low vs. high quality)…
• In this setting, ASPES is a nonparametric version of the approach to 

principal stratification via mixture modeling proposed by Jo (2002). 

ASPES (Peck, 2003)
Stage 1: 

𝑀 = 𝑓 𝑉, 𝑋
(estimate this in the treatment group using cross-validation 

method to prevent overfitting, then compute ෡𝑀 for each unit)
 

Stage 2:

CACE𝑃 = 𝐸 𝑌|𝑇 = 1, ෡𝑀 = 1 − 𝐸 𝑌|𝑇 = 0, ෡𝑀 = 1

NACE𝑃 = 𝐸 𝑌|𝑇 = 1, ෡𝑀 = 0 − 𝐸 𝑌|𝑇 = 0, ෡𝑀 = 0

CACE =
𝐸 1 − ෡𝑀|𝑀 = 0 CACE𝑃 − 1 − 𝐸 ෡𝑀|𝑀 = 1 NACE𝑃

𝐸 1 − ෡𝑀|𝑀 = 0 + 𝐸 ෡𝑀|𝑀 = 1 − 1

NACE =
𝐸 ෡𝑀|𝑀 = 1 NACE𝑃 − 1 − 𝐸 1 − ෡𝑀|𝑀 = 0 CACE𝑃

𝐸 1 − ෡𝑀|𝑀 = 0 + 𝐸 ෡𝑀|𝑀 = 1 − 1

Principal Stratification via Mixture Modeling (Jo, 2002)
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If M is continuous…

• There isn’t a lot of guidance on how to appropriately incorporate 
M in our analyses when it’s continuous.

• The principal stratification framework struggles to accommodate 
an M with many levels (even many discrete levels). 

• Often, researchers will artificially discretize M in this case so that 
they can apply the well-established methods for the discrete M 
case.



If M is continuous…

• ASPES can actually be used with a continuous M similarly to how 
two stage least squares (TSLS) methods for IV often handle 
continuous causal variables of interest. 



If M is continuous…

Stage 1: 
𝑀 = 𝑓 𝑉, 𝑋 + 𝛿

𝛿 ~ 𝑁(0, 𝜎𝑀
2 )

(estimate this in the treatment group using 
cross-validation method to prevent overfitting, 

then compute ෡𝑀 for each unit)
Stage 2:

𝑌 = 𝑔 𝑇, ෡𝑀, 𝑋 + 𝜖

𝜖 ~ 𝑁(0, 𝜎𝑌
2)

This can be done with TSLS, using linear models in both stages if those 
functional form assumptions are reasonable. 



If M is continuous…

Stage 1: 
𝑀 = 𝛼0 + 𝛼1𝑉 + 𝛼2𝑋 + 𝛿

𝛿 ~ 𝑁(0, 𝜎𝑀
2 )

(estimate this in the treatment group using 
cross-validation method to prevent overfitting, 

then compute ෡𝑀 for each unit)
Stage 2:

𝑌 = 𝛽0 + 𝛽1𝑇 + 𝛽2
෡𝑀 + 𝛽3𝑇 ෡𝑀 + 𝛽4𝑋 + 𝛽5𝑇𝑋 + 𝜖

𝜖 ~ 𝑁(0, 𝜎𝑌
2)



Translating to FIML-estimated Model
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Translating to FIML-estimated Model
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Translating to FIML-estimated Model

• Full information maximum likelihood (FIML) handles the missing 
data in M under the assumption of missingness at random (MAR), 
which is satisfied by design due to the missingness in M being 
perfectly explained by T. 

• Obviously, this limits the ASPES approach by making parametric 
assumptions, but these could be relaxed, and estimating the model 
with FIML circumvents the cumbersome stage-1 cross-validation 
and opens ASPES up to all the benefits/possibilities of latent 
variable modeling.



Preliminary Simulation Results

• Preliminary simulations have thus far been confirming that this 
FIML approach reproduces the estimates found with the original 
ASPES two-stage implementation using linear models, and that 
both approaches accurately recover the TM interaction effect when 
the IER assumption holds. 

• Additionally, as long as the IER assumption was satisfied, the TM 
effect is accurately recovered even when M and Y share a 
confounder that mediates and/or moderates the treatment effect.



Causal Moderation?

• Although this clearly cannot be considered causal mediation, the 
question still stands: is this TM interaction effect an average causal 
moderation effect? 

• Or is it simply an unbiased estimate of the heterogeneity in the average 
causal effect that happens to relate to M?

• In potential outcomes terms, is this the unbiased average causal effect 
of M on Y1–Y0? Or is this just a measure of the relationship between M 
and Y1–Y0 that may solely be due to an omitted confounder?



Causal Moderation?

• Let’s consider VanderWeele’s (2014) decomposition of causal 
mediation/interaction:

ITT = 𝑌1 − 𝑌0 = CDE 0 + INT𝑟𝑒𝑓 + INT𝑚𝑒𝑑 + PIE

Controlled Direct Effect CDE 0 = 𝑌10 − 𝑌00

Reference Interaction INT𝑟𝑒𝑓 = 𝑌11 − 𝑌10 − 𝑌01 − 𝑌00 𝑀0

Mediated Interaction INT𝑚𝑒𝑑 = 𝑌11 − 𝑌10 − 𝑌01 − 𝑌00 𝑀1 − 𝑀0

Pure Indirect Effect PIE = 𝑌01 − 𝑌00 𝑀1 − 𝑀0



Causal Moderation?

• If we define M as the value that would be realized when assigned to the 
treatment group, then there is no difference between M0 and M1; M0 = 
M1 = M

ITT = 𝑌1 − 𝑌0 = CDE 0 + INT𝑟𝑒𝑓 + INT𝑚𝑒𝑑 + PIE

Controlled Direct Effect: CDE 0 = 𝑌10 − 𝑌00

Reference Interaction: INT𝑟𝑒𝑓 = 𝑌11 − 𝑌10 − 𝑌01 − 𝑌00 𝑀

Mediated Interaction: INT𝑚𝑒𝑑 = 𝑌11 − 𝑌10 − 𝑌01 − 𝑌00 𝑀 − 𝑀

Pure Indirect Effect: PIE = 𝑌01 − 𝑌00 𝑀 − 𝑀



Causal Moderation, kind of?

• What we end up with is a kind of one-sided moderation effect. 

• We haven’t actually identified the causal effect of M on Y given T, 
but we have identified the causal effect of T on Y given M 
(obviously through random assignment) and the causal effect of M 
on Y for the treatment group. 

• It’s arguably causal moderation in the sense that M causing 
changes in Y1 while causing no changes in Y0 naturally means that 
M causes changes in Y1–Y0. 



Conclusions

• Still working on these simulations

• Next steps include exploring ASPES with a latent variables using 
the FIML approach, as well as other extensions such as multilevel 
versions of the approach.

• Thanks for listening!
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