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Huitema (2011) proposed quasi-ANCOVA to increase statistical power in randomized designs by 

controlling for covariates that were measured after the start of treatment. Quasi-ANCOVA 

accomplishes this with group-mean centering, thereby removing any effect of treatment on the 

covariate (which would otherwise bias the analysis toward non-significance). Lin (2018; Lin & 

Larzelere, 2020) extended that strategy to dual-centered ANCOVA by centering the posttest 

scores as well as the pretest scores on the pretest group means. That strategy produces robust 

treatment estimates from ANCOVA and difference-score analyses of the dual-centered data. 

Those robust results replicate the treatment effect from the original difference-score analysis prior 

to group-mean centering. Following Huitema (2011), we assumed that the use of ANCOVA to 

analyze dual-centered data increased the statistical power for predicting difference-score estimates 

of treatment effects. However, Lin’s simulations indicate that the standard deviation of treatment 

effects across 1000 replications corresponds to the standard deviation of treatment effects for the 

original difference-score analysis rather than the SD of treatment effects under the original 

standard ANCOVA (Table 1).  

 

Since submitting this proposed presentation for this conference, B. Wade Brorsen (Brorsen et al., 

2023) showed us that these results occur because group-mean centering is an example of a 

generated regressor (Pagan, 1984). A generated regressor is a predictor in one regression 

equation that is generated from another regression equation. The correct standard error for 

treatment effects in models with generated regressors, such as quasi-ANCOVA and dual-centered 

ANCOVA, must be estimated with two-stage least squares (or maximum likelihood in some 

cases), not with ordinary least squares regression.  

 

Generated regressors can produce incorrect standard errors in randomized pre-post designs as 

well as nonequivalent comparison-group designs based on Lin’s simulations. That is, OLS 

regression can produce incorrect standard errors in regression equations with generated 

regressors even in designs lacking systematic differences between the pretest group means. Any 

pretest group differences in randomized pre-post designs occur only due to random variations 

around the same grand mean at the population level (expected mean values).  

 

How then does standard ANCOVA and dual-centered ANCOVA differ from each other in the 

randomized pre-post design? Standard ANCOVA correctly predicts the shrinkage in the 

difference between the pretest group means from the pretest to the posttest, as a function of the 

difference between the pretest group means and the within-group regression coefficient predicting 

posttest scores from pretest scores (Figure 1). Note that larger discrepancies from the expectation 

of equal pretest group means 
0 result in larger regression toward the grand mean on the posttest 

1 . But mean values on the random variations in pretest group means (i.e., equal pretest group 

means, 
0 0d  ) do not regress toward the grand mean, because they are already at the grand mean 

(of positive or negative signed differences between the group means).  
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In contrast to standard ANCOVA, group-mean-centered ANCOVA always forces the pretest 

group means to be equal to each other. It is as though group-mean centering makes each centered 

pretest group mean predict the posttest score as though it were the grand mean of random 

variations around an expectation of equal group means (second panel, Figure 1). Under the null 

hypothesis then, dual-centered ANCOVA always predicts that the two original pretest group 

means will maintain their difference from each other on the posttest, an expectation that is 

identical to the expected posttest scores of the original differences-score analysis under its null 

hypothesis (i.e., parallel slopes from pretest to posttest). 

 

This explanation implies that when group-mean centering is incorporated into a regression-based 

analysis and is analyzed as an OLS regression analysis, the standard error of estimate can be 

under-estimated, because OLS regression models treat it like an ordinary ANCOVA-like 

prediction of a residualized score, when the correct standard error should be the same as the 

corresponding standard error in a two-stage least squares analysis.  

 

Pagan (1984, Model 4, pp. 232-233) considers the case of multilevel modeling (nested data) and 

concludes that OLS regression produces the correct standard error of estimate for residuals from 

the generated regressor, but not for the generated regressor itself.  

 

Do multilevel modeling programs base their statistical tests on the correct standard error at higher 

levels (e.g., Level 2)? Hua Lin has started doing some simulation analyses in R to help to answer 

this question. She is now trying to check her simulations, including verifying that she can get the 

same result in corresponding linear growth models.  

 

In any case, we need to be sure that the standard errors are correct in general linear models that 

incorporate generated regressors, such as group-mean centering, in their models. 

 

References 
Brorsen, B. W., Larzelere, R. E., & Lin, H. (2023). Critique of enhanced power claimed for Quasi-ANCOVA and 

Dual-Centered ANCOVA. Oklahoma State University.  

Huitema, B. E. (2011). The analysis of covariance and alternatives (2nd ed.). Wiley. 

https://doi.org/10.1002/9781118067475  

Lin, H. (2018). Revealing and resolving contradictory ways to reduce selection bias to enhance the validity of 

causal inferences from non-randomized longitudinal data [Dissertation, Oklahoma State University]. 

Stillwater, OK.  

Lin, H., & Larzelere, R. E. (2020). Dual-centered ANCOVA: Resolving contradictory results from Lord’s paradox 

with implications for reducing bias in longitudinal analyses. Journal of Adolescence, 85, 135-147. 

https://doi.org/10.1016/j.adolescence.2020.11.001  

Pagan, A. (1984). Econometric issues in the analysis of regressions with generated regressors. International 

Economic Review, 25(1), 221-247.  

https://doi.org/10.1002/9781118067475
https://doi.org/10.1016/j.adolescence.2020.11.001


Paper for the Modern Modeling Methods conference, Storrs, CT, June 28, 2023. We are grateful for help from 

David Kenny, Joshua Habiger, Isaac Washburn, & Tianyu Liu and for funding from NICHD grant 5 R03 

HD107307 

 
 

 

 

 
Figure 1. Distinct null hypotheses for ANCOVA and for Difference-Score Analysis (Illustrated for 

simulating the null hypotheses of the two change-score analyses of Lord’s Paradox. Randomized 

pre-post designs would have a similar pattern relative to each other for their respective null 

hypotheses for an extreme random variation around the expected grand means of 145 for both 

groups at the Pretest.)
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Table 1. Simulated results of five analyses of randomized pre-post data generated under the null hypothesis. 

               

id mod_name model rho b_y0 s_b_y0 b_Tx s_b_Tx sd_b_Tx TSS SSREG_y0 SSREG_Tx SSE MSE v_error 

1 ANOVA y1 ~ Tx 0.00 - - 
-

0.009 0.9482 0.9760 224651.4 - 237.92 224413.5 224.86 225 

2 ANCOVA y1~y0+Tx 0.00 0.00 0.032 
-

0.011 0.9487 0.9767 224651.4 220.2 237.98 224193.3 224.87 225 

3 
Quasi-
ANCOVA y1 ~ y0_c + Tx 0.00 0.00 0.032 

-
0.009 0.9482 0.9760 224651.4 220.2 237.92 224193.3 224.87 225 

4 dif_in_dif y10 ~ Tx 0.00 - - 
-

0.023 1.3403 1.3209 448827.1 - 435.91 448391.2 449.29 450 

9 DC_ANCOVA y1_c ~ y0_c + Tx 0.00 0.00 0.032 
-

0.023 0.9482 1.3209 224849.4 220.2 435.91 224193.3 224.87 225 

1 ANOVA y1 ~ Tx 0.20 - - 
-

0.008 0.9482 0.9820 224655.2 - 240.87 224414.4 224.86 225 

2 ANCOVA y1~y0+Tx 0.20 0.20 0.031 
-

0.012 0.9295 0.9506 224655.2 9207.9 228.49 215218.9 215.87 216 

3 
Quasi-
ANCOVA y1 ~ y0_c + Tx 0.20 0.20 0.031 

-
0.008 0.9290 0.9820 224655.2 9195.5 240.87 215218.9 215.87 216 

4 dif_in_dif y10 ~ Tx 0.20 - - 
-

0.021 1.1988 1.1815 359061.7 - 348.73 358713.0 359.43 360 

9 DC_ANCOVA y1_c ~ y0_c + Tx 0.20 0.20 0.031 
-

0.021 0.9290 1.1815 224763.1 9195.5 348.73 215218.9 215.87 216 

1 ANOVA y1 ~ Tx 0.40 - - 
-

0.006 0.9482 0.9876 224650.5 - 243.62 224406.9 224.86 225 

2 ANCOVA y1~y0+Tx 0.40 0.40 0.029 
-

0.012 0.8694 0.8827 224650.5 36147.2 200.13 188303.2 188.87 189 

3 
Quasi-
ANCOVA y1 ~ y0_c + Tx 0.40 0.40 0.029 

-
0.006 0.8690 0.9876 224650.5 36103.7 243.62 188303.2 188.87 189 

4 dif_in_dif y10 ~ Tx 0.40 - - 
-

0.018 1.0382 1.0232 269296.3 - 261.55 269034.7 269.57 270 

9 DC_ANCOVA y1_c ~ y0_c + Tx 0.40 0.40 0.029 
-

0.018 0.8690 1.0232 224668.4 36103.7 261.55 188303.2 188.87 189 

1 ANOVA y1 ~ Tx 0.60 - - 
-

0.004 0.9481 0.9927 224635.2 - 246.12 224389.0 224.84 225 

2 ANCOVA y1~y0+Tx 0.60 0.60 0.025 
-

0.012 0.7589 0.7644 224635.2 81030.6 152.86 143451.7 143.88 144 
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3 
Quasi-
ANCOVA y1 ~ y0_c + Tx 0.60 0.60 0.025 

-
0.004 0.7585 0.9927 224635.2 80937.4 246.12 143451.7 143.88 144 

4 dif_in_dif y10 ~ Tx 0.60 - - 
-

0.015 0.8477 0.8354 179530.9 - 174.37 179356.5 179.72 180 

9 DC_ANCOVA y1_c ~ y0_c + Tx 0.60 0.60 0.025 
-

0.015 0.7585 0.8354 224563.4 80937.4 174.37 143451.7 143.88 144 

1 ANOVA y1 ~ Tx 0.80 - - 
-

0.002 0.9480 0.9970 224603.3 - 248.23 224355.0 224.80 225 

2 ANCOVA y1~y0+Tx 0.80 0.80 0.019 
-

0.009 0.5691 0.5681 224603.3 143841.3 86.57 80675.4 80.92 81 

3 
Quasi-
ANCOVA y1 ~ y0_c + Tx 0.80 0.80 0.019 

-
0.002 0.5688 0.9970 224603.3 143679.6 248.23 80675.4 80.92 81 

4 dif_in_dif y10 ~ Tx 0.80 - - 
-

0.010 0.5994 0.5907 89765.4 - 87.18 89678.2 89.86 90 

9 DC_ANCOVA y1_c ~ y0_c + Tx 0.80 0.80 0.019 
-

0.010 0.5688 0.5907 224442.2 143679.6 87.18 80675.4 80.92 81 

               

  

Notes 
            

  

y0: pretest 
            

  

y1: posttest 
            

  

y0_c: pretest centered on pretest group mean 
        

  

y1_c: posttest centered on pretest group mean 
        

  

Tx: treatment 
            

               

  

rho: within-group correlation between pre and post 
       

  

b_y0: estimated coefficient for the covariate (pretest) 
       

  

s_b_y0: standard error of the estimated coefficient for the covariate (OLS) 
     

  

b_Tx: estimated treatment  effect 
         

  

s_b_Tx: standard error of the estimate of the treatment effect (OLS) 
      

  

sd_b_Tx: SD of the 1000 estimated treatment effects 
       

  

TSS: total sum of squares 
          

  

SSREG_y0: sum of squares for the pretest 
        

  

SSREG_Tx: sum of squares for Tx 
         

  

SSE: sum of squares for error 
          

  

MSE:  mean squared error from the simulation 
       

  

v_error:  variance of error based on calculation 
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mean of pretest for Tx 
     

130 
     

  

mean of pretest for Cntrl 
    

130 
     

  

mean of posttest for Tx 
    

130 
     

  

mean of posttest for Cntrl 
    

130 
     

  

SD for the pre- and post-test scores within a group at one time 15 
      

        dif_in_dif: differences in differences 

        DC_ANCOVA: Dual-centered ANCOVA 


