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▶ Today’s talk: deals with estimation upon non-parametric latent manifolds introduced
yesterday.

▶ Linear Factor Analysis (FA) was formalised by Eckart and Young (1936): a linear Whitney
embedding was proven for the Frobenius norm ℓ2 abelian sub-space space wrt columns,
assuming a Gramian similarity matrix. – Technically treated as a contraction when
Σp×p 7→ θ⊺n×q × θn×q.

▶ Thus, the covariance matrix must be abelian and invertible, possessing a linear spanning
basis unique upon the sample set.

▶ There are alternative covariance matrices which may be employed. ℓ2 presumes Gaussian
data to ensure MLE equiv GM, but it is not necessary.
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Table: Presentation of the observation of either a linear or non-linear manifold wrt the ranks and scores
of upon a collection of random variables and their errors.

Ranks Ranks

Scores Linear Non-linear

Linear (1) (2)

Non-linear (3) (4)
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▶ If the Neyman-Pearson lemma is true (or else reject all of Frequentist states…) then we
expect an abelian function space to be expressible upon both the observed and latent
domains and sufficient. This addresses points 1 & 2.

▶ Under the Eckart and Young (1936) theorem, nothing explicitly requires ℓ2 to define the
observed data linearly, only that the latent sub-space be a uniquely defined linear function
of such data.

▶ Thus, a short-mapping is sufficient: both the latent and observed spaces being Gaussian
is a stronger than necessary condition.

▶ For the sake of argument, consider what would be observed if we attempted to embed
linear or non-linear observed data onto a non-linear latent variable.

▶ Unsurprisingly, attempting to approximate a non-linear surface with a linear greedy
approximation would neither result in unbiased nor efficient estimates. Moreover, as the
Gauss-Markov conditions are not met, the solution is not generalisable beyond the sample.
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▶ Under such conditions, we would expect a non-linear latent manifold to produce
inconsistent fit with the data: this would also explain the significant χ2 test results, which
replicate across multiple samples.

▶ Moreover, we would expect such tests to be excessively inconsistent with the proposed
linear latent manifold: exceptionally strong rejection of the null hypothesis would be a
necessary consequence.

▶ Such findings are, again unsurprisingly, entirely consistent with 80 years of Social Science
research. They also can be explained as wishful thinking: after all, we have yet to actually
propose an quantitative alternative.

7 / 34



Non-parametric linear short-mappings I
▶ We observe upon the real line Rn×p the Borel-Cantelli lemma, reflecting the almost sure

convergence of a solution. When said real data is Gaussian, we can leverage the ℓ2
operator norm to define functions which are unbiased and minimum-variance.

▶ This allows us to relax both n < ∞+, p < ∞+, and still obtain Gauss-Markov estimators:
this is necessary because it takes a very long time to acquire a study which contains the
exhaustive population of people and the exhaustive population of features.

▶ Upon this population, by the CLT, we obtain factor scores: weighted linear combinations
which asymptotically sum to a normal distribution.

▶ This is why we declared all latent variables to be Gaussian distributed.

▶ A natural, yet oddly unasked, question though is: Is the asymptotic latent Gaussian
manifold stable?
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Non-parametric linear short-mappings II
▶ Stability reflects the relaxation of the asymptotics to ensure the same distribution is

obtained for finite samples.

▶ The Glivenko-Cantelli theorem ensures n < ∞+ remains unbiased, as long as it is
uniformly sampled.

▶ However, we rarely have exceptionally long test questions, such that p � ∞+ : are short
tests guaranteed to reflect Gaussian latent variables?

▶ The answer, unsurprisingly, is no. The evidence is favour of this conclusion is exceptionally
long-standing: it exists by the fields rejection of the Neyman-Pearson GOF test.

Vp×p = Ψp×p + Λp×qΦ⊺
q×qΛ⊺

p×q. (1)

▶ Generally, we tend to prefer such estimators. However, we rejected it because we almost
always found Structural Equation Models to exhibit significant misfit.
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Non-parametric linear short-mappings III

▶ The attempted justification was that the estimator is overly sensitive: however consider
the assumptions:

1. The observed manifold is uniquely defined in an unbiased manner, and can be summarised
upon the ℓ2-operator norm.

2. The latent contraction (ℓ2 × ℓ2 7→ ℓ2) is correctly defined and exhibits properties of a
Gauss-Markov estimator of approximation.

3. The latent manifold is Gaussian.
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Gaussian latent variables I
▶ The Gaussian nature of errors in function approximation is a consequence of Eckart and

Young (1936) being constructed as a Hadamard estimation problem.

▶ We construct p estimating equations for each of q latent dimensions, averaging over n
sample individuals.

▶ By the central limit theorem, even if p variables are not normally distributed, their
asymptotic weighted linear combination is still Gaussian.

▶ If they are linear functions, then we expect the data structure to be unbiased and possess
minimum variance. Thus, all latent variables are asymptotically Gaussian.

▶ These conditions are, upon the test item population, identical to that of the Rasch model:
we expect Test scores to uniquely determine the ranking of the sample proportionately to
their true score θn×q

i , i = 1, 2, . . . , n.
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Gaussian latent variables II

▶ If the observed items do not share common discrimination though, there is no constant
∆T for test score. Once the 1PL is generalised, there is no longer bilinearity.

▶ As an estimation sub-space embedding of the Whitney theorem, the contraction upon
X⊺

n×p × Xn×p → θn×q, we lose the ability to unique define a unique score.

▶ Wilson (1928) first revealed this, by identifying the loss of uniqueness upon quadratic
polynomials and their lack of singular roots ±λj, and Bochner expressed this as

lim
p→∞+

p2 − p
2 + p ≤ p2,

which only achieves equality in the limit. Thus, factor score indeterminacy.
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Stability of Gaussian latent variables I

▶ Next, consider relaxing to p < ∞+. Under this relaxation, the linear embedding of the
Gaussian errors upon Xn×p 7→ θn×q + ϵ, ϵ ∼ N (µq×1, Σq×q, the observed values follows
through upon the Gaussian latent variables.

▶ Thus, if the latent variables are normally distributed, we expect to obtain unbiased tight
results upon finite samples wrt both n&p. This supports the claim that the GOF χ2-test
should hold, uniformly via Glivenko-Cantelli being the most powerful misspecification
detector.
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Non-Gaussian latent manifolds I

▶ However, the distribution of the latent manifold is an empirical assumption, not a
guarantee, unless performed upon the population of test items. This limit is therefore not
guaranteed stable: asymptotically normal latent variables are not expected to be noramlly
distributed upon finite samples when defined by only a few indicators.

▶ We offer a resolution to this problem by identifying a linear manifold and corresponding
probability structure which is orthonormal to the ℓ2 definition of the problem.

▶ Explicitly, we address the problem of Hadamard estimation problem as the ML or linear
Gauss-Markov (GM) estimate of the latent scores which are ranked most accurately.

▶ This process is achieved by separating and defining a linear topology upon the ranks, and
noting that, under certain general conditions, even non-linear scores are almost surely
linearly ranked.
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Non-Gaussian latent manifolds II
▶ The first problem consists of defining a sufficient domain for the problem: Sn! is typical,

but the lack of continuous random variables and their linear combination results in strong
probability of ties occuring.

▶ We require a means of defining a metric space over permutations with ties:
Mn = {nn − n}m.

▶ Note that we explicitly exclude the now possible n permutation events which are
degenerate from the population.

▶ Kemeny (1959) first identified a metric space for this, however his expression was too
similar to Kendall (1938), and failed to recognise that the Kemeny space was a Hilbert
space.

▶ Upon a Hilbert space, we achieve almost sure convergence via the Borel-Cantelli lemma,
with a complete and unique probabilistic mapping for all n.
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▶ As noted, a positive definite covariance matrix which is expressible upon the ℓ2-norm
function space is necessary to explore this idea.

▶ To do this, we introduce the Kemeny (1959) metric: it serves as a permutation parallel
(formally, a projective geometric dual) to the ℓ2 function space. It is orthonormal to those
estimates, and can be estimated upon the same data.

▶ Note that any Xn×p 7→ Ap×p ×Bn×n is valid: any rectangular matrix can be uniquely and
exactly (in the Gram-Schmidt sense) represented as the linear combination of two square
matrices of different order.

τκ(x, y) = − 2
n2−n

n
∑
k=1

n
∑
l=1

κ(x)kl � κ⊺(y)kl = − 2
n2−n

(
ρκ(x, y)− n2−n

2

)
, {x, y} ∈ R

n×1. (2a)

ρκ(x, y) = n2 − n
2 +

n
∑

k,l=1
κkl(x)� κ⊺kl(y), k, l = 1, . . . , n. (2b)

κkl(x) =


√

.5 if xk > xl

0 if xk = xl,

−
√

.5 if xk < xl

(2c) κkl(y) =


√

.5 if yk > yl

0 if yk = yl,

−
√

.5 if yk < yl

(2d)
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▶ The Kemeny metric is a Hilbert space, and also a Gauss-Markov estimator. It is
affine-linear over monotonically non-decreasing functions as well.

▶ It operates upon Mn, the set of all permutations upon the extended real line, and
converges for all n almost surely.

▶ Sn ⊂ Mn as well. It addresses the problem of the probability of observing ties uniquely.

▶ This allows us to express a distance matrix between all vectors Xn×p upon the sample, and
an affine-linear transformation of the distances provides a correlation measure τκ as well.
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▶ Xn=5×1 = [1, 2, 3, 4, 5]⊺:

κk,l(X) =



l = 1 l = 2 l = 3 l = 4 l = 5
k = 1 0 a1,2 a1,3 a1,4 a1,5
k = 2 −a2,1 0 a2,3 a2,4 a2,5
k = 3 −a3,1 −a3,2 0 a3,4 a3,5
k = 4 −a4,1 −a4,2 −a4,3 0 a4,5
k = 5 −a5,1 −a5,2 −a5,3 −a5,4 0


(3)

X∗ = [−4a,−2a, 0a, 2a, 4a]⊺ (4)

ŝ2
∗(X) =

1
5 − 1 ∑

i=1
X∗(i)2 =

40 · (
√

1
2 )

2

4 = 5. (5)

▶ Here, we express the skew-symmetric matrix of order n × n, a natural representation of
the permutation structure upon the population M5.
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▶ These elements, a =
√

1
2 provide a linear spanning basis (confirmed via Gram-Schmidt),

and allow for constructing an n × 1 representation by the transpose of the marginalisation
over all rows, acting as an affine-linear transformation of the pre-existing norm’s basis.

▶ The linear combination of the former basis provides a Gauss-Markov estimator, defined as
a generalisation of Kendall (1938) τ.

▶ The linear combination of the latter basis provides a Gauss-Markov estimator as a
generalisation of Spearman (1904) ρ.

▶ As both operate upon the domain of the extended real line, Xn×1 ∈ R
n×1, we observe

that the Borel-Cantelli convergence guarantees exist upon both estimators, even when
considering the Cauchy distribution. This is because the median is defined even when the
mean is not.
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Correlation performance

mean sd median trimmed mad min max range skew kurtosis
r 0.485 0.044 0.486 0.485 0.044 0.297 0.642 0.344 -0.110 -0.006
ρ 0.509 0.036 0.510 0.510 0.036 0.345 0.635 0.290 -0.116 0.017
τb 0.445 0.033 0.445 0.445 0.033 0.292 0.563 0.271 -0.084 0.016
Kem ρκ 0.509 0.036 0.510 0.510 0.036 0.345 0.635 0.290 -0.116 0.017
Kem τκ 0.324 0.025 0.325 0.324 0.025 0.214 0.412 0.199 -0.073 0.018
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Another comparison under population independence

Table: Comparison of the average error in correlation for a bivariate pair, using various methods
estimated over a number of sample sizes, each time for 15,000 iterations. Note that the biased variance
of the Kendall estimator approaches our estimator as n increases.

vars Average Error sd of estimator error median min max

n=30
Kemeny ρ 0.000 0.187 0 -0.63 0.6
Kemeny τκ 0.001 0.129 0 -0.45 0.46
Pearson r -0.001 0.187 0 -0.64 0.62
Kendall τb 0.000 0.134 0 -0.47 0.48

n=1500
Kemeny ρ 0.001 0.082 0 -0.31 0.31
Kemeny τκ 0.001 0.045 0 -0.21 0.10
Pearson r 0.001 0.082 0 -0.31 0.31
Kendall τb 0.000 0.055 0 -0.21 0.11

n=5000
Kemeny ρ 0.000 0.045 0 -0.17 0.14
Kemeny τκ 0.000 0.030 0 -0.12 0.13
Pearson r 0.000 0.045 0 -0.17 0.14
Kendall τb 0.000 0.030 0 -0.12 0.13
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▶ Mokken (1971) first proposed a non-parametric latent variable. He identified it via the
same bilinearity condition that identifies the Rasch/1PL model: the linear ordering of the
total scores is proportionate the the rankings upon the latent variable.

▶ However, the Mokken model is unfortunately more descriptive than quantitative: all we
can really do with it is sort the scores.

▶ Moreover, the presence of ties precludes the identification of non-unidimensional latent
variables: we cannot uniquely measure linear combinations of rankings with error, as sums
of individual items produce surjective mappings. This occurs almost surely under the
birthday paradox for small item response sets (e.g., 1-6).

▶ Note though that the latent variable scores are the relative rankings upon the test,
questionnaire, or scale, denoting relative extremenes of responses.
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▶ This is suspiciously similar to the Kemeny ρκ domain (in fact, it is the same): just a linear
function of the relative rankings upon the linear or non-linear scores.

Xn×p = Θn×qΦq×qΛ⊺
p×q + Ψn×p + En×p. (6)

(n − 1)Vp×p = X⊺
n×pXn×p

= (ϵn×p + Θn×qw⊺
p×q)

⊺(ϵn×p + Θn×qw⊺
p×q)

= ϵ⊺n×pϵn×p + ϵ⊺n×pΘn×qwp×q + w⊺
p×qΘ⊺

n×qϵn×p + wp×qΘ⊺
n×qΘn×qw⊺

q×p

= (n − 1)Ψp×p + 0 + 0 + (n − 1)wIw⊺

= (n − 1)Ψ + (n − 1)ww⊺

Vp×p = Ψp×p + wp×qw⊺
p×q

(7a)
Vp×p = Ψp×p + Λp×qΦ⊺

q×qΛ⊺
p×q. (7b)
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Empirical Demonstration: Iris dataset I
▶ We performed CFA variable model for the Iris dataset, ultimately to conduct

measurement invariance

▶ Note that: the standard errors upon continuous random variables are biased (too little
variance on κ)

▶ We can correct this by multiplying s.e.’s by ( 7
11 )

2

▶ Not a problem for discrete (i.e., ordinal) data items. This numerical analytic correction
confirmed by bootstrapping.

▶ Once corrected, everything can be interpreted and reported as expected.

▶ Note that there is now a direct inverse correlation between s.e. and χ2, as
expected/required by the Neyman-Pearson lemma.
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Empirical Demonstration: Iris dataset

χ2
2 = 1.423, p ≤ .491 χ2

2 = 1.397, p ≤ .497 χ2
2 = 59.593, p ≤ .000 χ2

2 = 33.890, p ≤ .000

Est s.e. Est s.e. Est s.e. Est s.e.

Sepal.Length 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
Sepal.Width -0.229 0.045 -0.229 0.046 -0.350 0.044 -0.342 0.058
Petal.Length 1.242 0.048 1.242 0.048 2.776 0.156 2.734 0.142
Petal.Width 1.079 0.043 1.076 0.043 1.027 0.069 1.067 0.062
Sepal.Length 0.423 0.024 0.417 0.024 0.235 0.026 0.121 0.016
Sepal.Width 0.894 0.042 0.883 0.042 0.134 0.014 0.082 0.012
Petal.Length 0.132 0.021 0.131 0.021 -0.339 0.056 -0.173 0.033
Petal.Width 0.296 0.021 0.299 0.021 0.107 0.013 0.071 0.009
F 0.537 0.042 0.542 0.043 0.446 0.073 0.431 0.073
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Empirical Demonstration: Iris dataset, Measurement Invariance

Df χ2 ∆χ2 ∆(df) Pr(∆χ2
6))

fit.config 6 8.4402 – 6 –
fit.loadings 12 17.3421 8.9018 6 0.1791737
fit.strong 18 44.7294 27.3873 6 0.0001225
fit.strict 26 53.1954 8.4660 8 0.3893233

fit.config2 6 26.98
fit.loadings2 12 62.95 35.97 6 0.0000
fit.strong2 18 118.24 55.29 6 0.0000
fit.strict2 26 131.90 13.66 8 0.0912

fit.config2 6 30.91
fit.loadings2 12 74.44 47.52 6 0.0000
fit.strong2 18 228.09 171.90 6 0.0000
fit.strict2 26 312.34 66.91 8 0.0000
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Empirical Demonstration: Holzinger dataset, Measurement Invariance

Procedure Df χ2 ∆χ2 RMSEA ∆(df) Pr(∆χ2
6))

Kem_ML
fit.config 96 52.17
fit.loadings 114 60.84 8.67 0.00 18 0.9670
fit.strong 132 119.97 59.13 0.17 18 0.0000
fit.strict 159 124.67 4.70 0.00 27 1.0000

Df χ2 ∆χ2 RMSEA ∆(df) Pr(∆χ2
6))

Kem_GLS
fit.config2 96 47.03
fit.loadings2 114 52.39 5.36 0.00 18 0.9982
fit.strong2 132 106.92 54.53 0.16 18 0.0000
fit.strict2 159 114.30 7.38 0.00 27 0.9999

Df χ2 ∆χ2 RMSEA ∆(df) Pr(∆χ2
6))

Pear_ML
fit.config3 96 158.94
fit.loadings3 114 195.82 36.87 0.12 18 0.0054
fit.strong3 132 259.21 63.39 0.18 18 0.0000
fit.strict3 159 310.67 51.46 0.11 27 0.0031
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Comparison of fitness statistics for Holzinger-Swineford

Table: Distributions of the likelihood-ratio tests for the Holzinger data set under different estimators,
Ordinal defining the combination of polychoric and DWLS estimators, for various n.

n mean sd median mad min max range skew kurtosis

n = 301

Kem_ml 135.78 8.54 135.41 8.50 107.94 172.14 64.20 0.19 0.06
Kem_gls 125.25 7.10 125.11 7.07 100.22 156.27 56.05 0.02 0.05
Pear_ml 762.03 39.11 759.76 38.54 642.64 952.66 310.03 0.36 0.28
Pear_gls 838.45 52.84 837.61 53.23 654.54 1037.89 383.35 0.09 0.05
Ken_ml 238.11 25.11 236.03 24.41 165.14 355.81 190.67 0.51 0.52
Ken_gls 836.07 165.33 837.49 179.24 388.66 1371.87 983.21 -0.02 -0.56

n = 750

Kem_ml 327.49 13.01 327.15 13.05 284.63 371.73 87.10 0.11 -0.09
Kem_gls 307.78 11.15 307.55 11.11 267.35 354.09 86.75 0.09 -0.01
Pear_ml 1862.46 59.63 1861.04 60.92 1660.84 2146.83 485.99 0.16 0.08
Pear_gls 2086.23 83.36 2086.02 83.58 1734.29 2443.53 709.23 -0.01 0.11
Ken_ml 573.25 38.94 572.07 39.50 458.98 743.20 284.21 0.26 0.06
Ken_gls 2128.23 326.40 2126.12 337.12 1209.75 3113.24 1903.49 0.06 -0.40

n = 7500

Kem_ml 3209.740 41.008 3209.908 40.780 3055.841 3345.246 289.405 -0.007 -0.056
Kem_gls 3052.594 36.288 3052.480 36.659 2923.028 3175.430 252.402 0.013 -0.090
Pear_ml 18402.979 186.499 18403.916 189.628 17784.339 19041.252 1256.913 0.064 -0.125
Pear_mlr 20865.061 266.452 20865.209 274.161 19974.056 21818.144 1844.088 -0.021 -0.118
Pear_dwls 5610.712 120.587 5607.139 122.131 5218.355 6090.508 872.153 0.089 0.006

Ordinal 21664.151 1192.641 21666.358 1181.759 16652.545 27453.147 10800.602 0.012 0.483
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Demonstration of differences in fitness for alternative latent spaces upon
Big-5 Personality Index

Table: Model fitness for Gaussian and non-Gaussian latent variables upon the Big-5 model, and also
when stratified by gender. For comparison, analysis upon MVN Pearson Covariance matrix misfits
χ2

265 = 3843.296. Under Rhemtuella correction, null homogeneous scaled χ2
265 = 5584.411

Model χ2 DF Pr(χ2
df = 0)

Gaussian latent - Homogeneous 1439.265 265 .000
Non-Gaussian latent - Homogeneous 1045.181 265 .000

Gaussian latent - Gender - 1 572.530 265 .000
2 963.041 265 .000

Non-Gaussian latent - Gender - 1 399.291 265 .000
2 710.330 265 .000

Rhemtuella Gender - 1 3507.844 265 .000
2 2107.182 265 .000
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Benfits of this approach I
▶ Better fitting, non-significant, models.

▶ Uniformly most powerful tests can be used to evaluate the question of whether latent
variables truly are Gaussian.

▶ Tighter and more efficient (generalisable) empirical findings.

▶ Better performance upon small samples, since Ξ is pretty much always positive definite
(most extreme case was 12 × 27.)

▶ Any bivariate distribution which share a common CDF is a linear function of the Kemeny
metric.

▶ Allows us to solve ill-posed estimation problems uniquely (saddlepoint theorem), useful for
missing data EM approaches wherein Gaussian errors are not possible
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Benfits of this approach II

▶ Important implications for s.e. of missing data: if the expected Fisher Information Matrix
is employed, it is biased downwards, inflating the Type 1 error rate dramatically.

▶ Changes very little in the overall analytical procedures: replace the covariance matrix,
choose an estimator, adjust standard errors after fitting.

▶ Φ matrix remains intuitively interpretable as well: ρκ ≈ r.

▶ Keeps linear models over otherwise non-linear scores (e.g., generalised partial credit
model, ordinal regression, etc.)

▶ Note also that the polychoric correlation matrices presume latent normal distributions: if
we show the latent variables to not be Gaussian, then the polychoric correlations are often
biased.
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Benfits of this approach III

▶ Resolves the biggest problem of Social Science Measurement: why do my causal models
never fit the data well (without rejecting the Neyman-Pearson lemma).
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