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Linear Factor Analysis I

▶ Statistical estimation is a problem of adequate summarisation upon stable regular
structures.

▶ Regularity of structure enables generalisability: the structure of the sample is a
homogeneous representation of a larger population.

▶ Linear models are defined upon the Frobenius norm-space: ℓ2. This is due to
mathematical origins in function approximation.

▶ Constructively, this results in linear models possessing Gaussian errors: combined with
sampling assumptions, we obtain an a.s. convergent affine-linear Hilbert space.

2 / 51



Linear Factor Analysis I

▶ This is also a problem though: if we observe non-linear data scores, the Gaussian error
assumption is false, compromising the Gauss-Markov theorem.

▶ This results in biased estimators which are not stable and do not possess minimum
variance, or tight, estimation bounds.

▶ The generalised linear model developed to address in linear models non-linear scores, by
assuming a bilinearity condition (the central limit theorem).

▶ Under the CLT, exponential distributions converge to normality under the weak lln. This
allows us to identify both the ranking and scoring of individual elements uniquely (as a
Hilbert space; Riesz representation theorem)
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Linear topology upon a population I

Table: Presentation of the observation of either a linear or non-linear manifold wrt the ranks and scores
of upon a collection of random variables and their errors.

Ranks Ranks

Scores Linear Non-linear

Linear (1) (2)

Non-linear (3) (4)
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Discussion outline I
▶ By Nelder and Wedderburn (1972), we must explicitly identify the unique monotonically

non-decreasing link function to ensure stability.

▶ If mis-chosen, g(·) defines a convergent yet biased estimator. By CLT, we obtain
asymptotically unbiased but locally biased results. By IRLS of Expected Fisher
Information, I

−1
2 matrix, the results are strictly false if the estimator is biased though.

▶ Thus, finite sample differences become gratuitous, and we would expect such findings to
fail to generalise (easy instantiation of the failed application of the Berry-Essen Theorem
for Sum Scores).

▶ Bilinearity upon rank and score, is a population condition upon the ℓ2-norm space. A
unique estimator of the most accurate rankings only is observed when the score function
is known exactly: limn→∞+ FX(x) = r, F−1

X (r) = x.
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Topology of our problem I

▶ We often cannot uniquely identify adequate regularity in F: trivial examples are Olsson
(1979) MLE, non-parametric estimators, as well as Heywood cases. The lack of
analytically expressible second order regularity for Owen (2001) is also a problem
(bootstrapping).

▶ We lack a corresponding complete Hilbert function space for the permutations upon a
sample. The empirical approach attempts to correct this, but has no regularity outside
the sample itself. This is also why Mokken and Lewis (1982) is unidimensional: ties upon
linear mappings.

▶ Part of the problem lies in the lack of a suitable probabilistic mapping for rankings:
Sn = n! is insufficient for handling multiple covariates, as the linear combination of
elements typically results in ties.
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Topology of our problem II

▶ Grice (2001) pointed our a parable about multiple score distributions fit equally well
(maximise ℓ2 fitness) but possess divergent rankings.

▶ The asymptotic linearity of the ranking though leaves us unable to freely estimate ranking
upon finite samples. We need a means of evaluating finite samples (n) upon finite tests
(p).
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Gaussian latent variables I

▶ The Gaussian nature of errors in function approximation is a consequence of Eckart and
Young (1936) being constructed as a Hadamard estimation problem.

▶ We construct p estimating equations for each of q latent dimensions, averaging over n
sample individuals.

▶ By the central limit theorem, even if p variables are not normally distributed, their
asymptotic weighted linear combination is still Gaussian. Thus, all latent variables are
asymptotically Gaussian.

▶ As linear functions with individual p marginal Gaussian errors, we expect the data
structure to be unbiased and possess minimum variance, and the corresponding latent
variables to therefore be Gaussian.
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Gaussian latent variables II

▶ These conditions are, upon the test item population, identical to that of the Rasch (1961)
model: we expect Test scores to uniquely determine the ranking of the sample
proportionately to their true score θn×q

i , i = 1, 2, . . . , n.

▶ If the observed items do not share common discrimination though, there is no constant
∆T for test score. Once the 1PL is generalised, there is no longer bilinearity.

▶ As a sub-space embedding by the Whitney theorem, the contraction upon
X⊺

n×p × Xn×p → θn×q, we lose the ability to define a unique linear score if finite sample
bilinearity is lost.
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Gaussian latent variables III

▶ Wilson (1928) first revealed this, by identifying the loss of uniqueness upon quadratic
polynomials and their lack of singular roots ±λj, and Bochner expressed this as

lim
p→∞+

p2 − p
2 + p ≤ p2,

which only achieves equality in the limit. Thus, factor score indeterminacy.
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Stability of Gaussian latent variables I
▶ A natural next question is then: is this asymptotic normality upon θn×q stable wrt n & p?

▶ Assuming i.i.d., the population of test items contractively embedded upon θn×p, n ≤ ∞+

is conditionally independent of all other samples, and thus converges via the Glivenko
(1933)-Cantelli (1933) theorem in the same procedure. A contractive mapping (Eckart &
Young, 1936) ensures the linearity of the observed space and its sub-space.

▶ Next, consider relaxing to p < ∞+. Under this relaxation, the linear embedding of the
Gaussian errors upon Xn×p 7→ θn×q + ϵ, ϵ ∼ N (µq×1, Σq×q), the observed values follows
through upon the Gaussian latent variables.

▶ Thus, if the latent variables are normally distributed, we expect to obtain unbiased tight
results upon finite samples wrt both n&p. This supports the claim that the GOF χ2-test
should hold, uniformly via Glivenko-Cantelli being the most powerful misspecification
detector.
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Non-Gaussian latent manifolds I

▶ However, the distribution of the latent manifold is an assumption, not a guarantee unless
performed upon the population wrt the test items. This limit is therefore not stable:
asymptotically normal latent variables are not expected to be noramlly distributed upon
finite samples when defined by only a few indicators.

▶ We offer a resolution to this problem by identifying a linear manifold and corresponding
probability structure which is orthonormal to the ℓ2 definition of the problem.

▶ Explicitly, we address the problem of Hadamard estimation problem as the ML or linear
Gauss-Markov (GM) estimate of the latent scores which are ranked most accurately.

▶ This process is achieved by separating and defining a linear topology upon the ranks, and
noting that, under certain general conditions, even non-linear scores are almost surely
linearly ranked.
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Non-Gaussian latent manifolds II
▶ The first problem consists of defining a sufficient domain for the problem: Sn is typical,

but the lack of continuous random variables and their linear combination results in strong
probability of ties occurring.

▶ We require a means of defining a metric space over permutations with ties:
Mn = {nn − n}m.

▶ Note that we explicitly exclude the now possible n permutation events which are
degenerate from the population.

▶ Kemeny (1959) first identified a metric space for this, however his expression was too
similar to Kendall (1938), and failed to recognise that the Kemeny space was a Hilbert
space.

▶ Upon a Hilbert space, we achieve almost sure convergence via the Borel-Cantelli lemma,
with a complete and unique probabilistic mapping for all n.
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Kemeny metric I

τκ (x, y) = − 2
n2−n

n
∑

k=1

n
∑
l=1

κ(x)kl � κ⊺(y)kl = − 2
n2−n

(
ρκ (x, y)− n2−n

2
)

, {x, y} ∈ R
n×1. (1a)

ρκ (x, y) = n2 − n
2 +

n
∑

k,l=1
κkl(x)� κ

⊺
kl(y), k, l = 1, . . . , n. (1b)

κkl(x) =


√

.5 if xk > xl
0 if xk = xl,

−
√

.5 if xk < xl

(1c) κkl(y) =


√

.5 if yk > yl

0 if yk = yl,

−
√

.5 if yk < yl

(1d)

σ̇2
κ (Mn) =

(n − 1)2(n + 4)(2n − 1)
18n , (2a)

σ2
κ (X) = 2

n(n−1)

( n
∑

k=1

n
∑
l=1

κkl(X)κ
⊺
kl(X)

)
≡ 2

n(n−1)

n
∑

l,k=1
κ2

kl(X). (2b)

▶ The Kemeny metric is a Hilbert space, and also a Gauss-Markov estimator. It is affine-linear over monotonically non-decreasing functions as well.

▶ It operates upon Mn, the set of all permutations upon the extended real line, and converges for all n almost surely.

▶ Sn ⊂ Mn as well. It addresses the problem of the probability of observing ties uniquely.
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Kemeny metric II

▶ This allows us to express a distance matrix between all vectors Xn×p upon the sample, and an affine-linear transformation of the distances provides a
correlation measure τκ as well.

▶ In Kendall (1948, p. 129) the following equivalence was established:

rX,Y = sin
(

τb(X, Y) · π

2

)
, (3)
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Kemeny metric III
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Important to note:

1. ℓκ 6= ℓ2, but can be isometrically embedded, as all Hilbert spaces are equivalent to the
Euclidean distance.

2. U(Mn) follows a Beta-Binomial distribution which is only asymptotically normally
distributed: stably strictly sub-Gaussian

3. It defines a linear function space which can be approximated by ℓ2 though.
4. Define Ξp×p as a Gramian covariance matrix of p input vectors which may possess

non-linear scores.
5. Together with the affine-linearity over monotone functions, including g ≡ I(·)., ℓ2

expresses ρκ satisfactorily: this enables a linear short-mapping.
6. Mapping Ξp×p 7→ θn×q is valid, but it does not necessarily follow that the embedding is

Gaussian. For example Φq×q becomes the inner-product of the linear embedding of
strictly sub-Gaussian latent variables, which upon ℓ2 ≈ Ξ denotes a second correlation,
ρκ ∼ Φq×q.
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Problem as currently stands I

▶ Does resolve the possibility of non-linear score embeddings upon linear rankings.

▶ Does NOT resolve identification of latent variable scores, other than showing they may
not be Gaussian.

▶ So what is the relationship upon the p2−p
2 + p � p2 known parameters of Ξ and the

p2−p
2 + p � p2 known parameters of Σ?

▶ First, note that p2−p
2 + p + p2−p

2 = p2

▶ This leaves the estimation problem just-identified, but as the embedding cannot be a
contraction, how can the two orthonormal metric spaces be linearly optimised upon?
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Supporting our claim: PI
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24, n = 750 test statistics from Table 2.

22 / 51



Supporting our claim: PII
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Gaussian latent variables I

Table: Distributions of the likelihood-ratio tests for the Holzinger data set under different estimators,
Ordinal defining the combination of polychoric and DWLS estimators, for various n.

n mean sd median mad min max range skew kurtosis

n = 301

Kem_ml 135.78 8.54 135.41 8.50 107.94 172.14 64.20 0.19 0.06
Kem_gls 125.25 7.10 125.11 7.07 100.22 156.27 56.05 0.02 0.05
Pear_ml 762.03 39.11 759.76 38.54 642.64 952.66 310.03 0.36 0.28
Pear_gls 838.45 52.84 837.61 53.23 654.54 1037.89 383.35 0.09 0.05
Ken_ml 238.11 25.11 236.03 24.41 165.14 355.81 190.67 0.51 0.52
Ken_gls 836.07 165.33 837.49 179.24 388.66 1371.87 983.21 -0.02 -0.56

n = 750

Kem_ml 327.49 13.01 327.15 13.05 284.63 371.73 87.10 0.11 -0.09
Kem_gls 307.78 11.15 307.55 11.11 267.35 354.09 86.75 0.09 -0.01
Pear_ml 1862.46 59.63 1861.04 60.92 1660.84 2146.83 485.99 0.16 0.08
Pear_gls 2086.23 83.36 2086.02 83.58 1734.29 2443.53 709.23 -0.01 0.11
Ken_ml 573.25 38.94 572.07 39.50 458.98 743.20 284.21 0.26 0.06
Ken_gls 2128.23 326.40 2126.12 337.12 1209.75 3113.24 1903.49 0.06 -0.40

n = 7500

Kem_ml 3209.740 41.008 3209.908 40.780 3055.841 3345.246 289.405 -0.007 -0.056
Kem_gls 3052.594 36.288 3052.480 36.659 2923.028 3175.430 252.402 0.013 -0.090
Pear_ml 18402.979 186.499 18403.916 189.628 17784.339 19041.252 1256.913 0.064 -0.125
Pear_mlr 20865.061 266.452 20865.209 274.161 19974.056 21818.144 1844.088 -0.021 -0.118
Pear_dwls 5610.712 120.587 5607.139 122.131 5218.355 6090.508 872.153 0.089 0.006

Ordinal 21664.151 1192.641 21666.358 1181.759 16652.545 27453.147 10800.602 0.012 0.483
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Intuitively defining our problem I

▶ The first solution is to characterise θ̂ as to obtain a set of scores which are ordered most
accurately upon finite samples of indicators.

▶ To do this requires recognising the Riemannian manifold upon the domain of the
estimator: linearly separate scores and ranks which are independently estimated, but share
a common unique θ̂n×q → θn×q.

▶ Asymptotically wrt p, said latent variables are normally distributed, but otherwise strictly
sub-Gaussian: we seek the LS solution which satisfies the GM ranking of θ̂n×q.

▶ The KKT score solution is actually Ridge regression, which is generally accepted to be
non-uniquely identified.
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KKT estimation of the latent factors I

Definition
An objective function f : R

p → R and the constraint functions gi : R → R and hj : Rn → R

possess sub-derivatives at a point x∗ ∈ Rn. Should x∗ be a local extrema while simultaneously
satisfying regularity conditions, there exists constants µi(i = 1, . . . , m) and γ2

j , which are the
Karush-Kuhn Tucker multipliers, whose solution must satisfy the following four conditions:

1. Stationarity
2. Primal feasibility
3. Dual feasibility
4. Complementary slackness.
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KKT estimation of the latent factors II

▶ The theorem of the Karush-Kuhn-Tucker conditions holds as follows:

Theorem
If there exists a solution x∗ to the primal problem, and a solution (u∗, v∗) to the dual problem,
which together satisfies the Karush-Kuhn-Tucker conditions (Definition 1), then the problem
pair has strong duality, and x∗, (u∗, v∗) is a solution pair to the prime and dual problems.

▶ Note that strong duality is the population bilinearity condition under the CLT: the gap
between the score solution and rank solution is minimised, and must converge to 0 upon
the population as a function of p → ∞+.
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Strong Duality I

Theorem
A strong duality between solutions to the minimisation of the Kemeny norm (primal problem)
and the minimisation of the Frobenius norm (dual problem) defines a duality gap equal to 0,
and thus establishes the projective geometric duality between the two topologies to be a
strongly duality.
▶ In Kendall (1948, p. 129) the following equivalence was established:

rX,Y = sin
(

τb(X, Y) · π

2

)
, (4)

▶ However, strictly speaking, if τb ⊂ τκ, then the left-expression is only true in the limit:

▶ For finite samples (or X, Y ∈ R
n×2,) estimator is a linear combination of n elements’

ranks, not scores.
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Strong Duality II

▶ This is not a problem, as limn→∞+ ρκ(X, Y) → r(X, Y) by the CLT.

▶ By Brouwer’s fixed point theorem, collinearity upon the similarity measure occurs at three
fixed mapping points {−1, 0, 1}, the outer two of which are excluded (as they denote
collinear solution points) from Mn.

▶ Thus, there remains one fixed point affine-linearly invariant solution point common to
both spaces, which denotes complete independence relative to affine linear
transformations. This is the origin which is coincidental upon each orthonormal abelian
function space.

▶ Empirically, it reflects the convergence of the mediand the mean.
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Strong Duality III

▶ The duality gap is then the difference given by

inf
x∈X

[F(x, 0)]− sup
y∗∈Y∗

[−F∗(0, y∗)], (5)

where F∗ is the convex conjugate in both variables. Note that per equation 4 is obtained
d∗ = rX,Y and p∗ = sin(τκ|X,Y · π

2 ), such that p∗ − d∗ = 0, and thus strong duality is
established for the solution to both orthonormal linear topologies.

▶ Consider d∗ to contain not only unique parametric but also Tikhinov-regularised solution
spaces, then there exists multiple solutions for the infinite set γ2

M = {γ2
j }

p
j=1 which

minimise f subject to the satisfaction of the isocontour of the Euclidean distance.
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Strong Duality IV

▶ However, there are two orthonormal criterion upon α, the regularity parameter space, and
thus a unique solution is obtained at the point x∗ which minimises both the Euclidean
and Kemeny metric spaces of the projection and the target, defined at f | inf g∗. Thus is
defined a manifold sub-space of all solutions which together denote the duality gap, by
constraint equality of 0 upon the population, and is otherwise a unique infinimum.

▶ Weak and strong duality thus holds as follows: there exists a unique Kemeny distance
exists between all finite vectors of length n.

▶ The solution to the Tikhinov-regularised duality obtains an infinite set of solution points
(p coefficient parameters) which all produce an identical finite distance upon ℓ2.
However, upon this image of the optimal finite isocontour exists a unique solution which
also minimises the Kemeny distance.
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Strong Duality V

▶ By Farkas’ Lemma, there is always one of the following alternatives, and the only
non-imaginary root is a real unique solution. The alternative Fredholm alternative results
in the imaginary solutions in Quantum Mechanics.
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Non-Gaussian latent variables I

▶ Solving the KKT in this fashion is sufficient, but inefficient: This is very similar to the
2-step Polychoric correlation as well

▶ We can use this to address a number of estimation problems while satisfying the
Gauss-Markov expectations wrt the solution space.

▶ Of course, this is leveraging Slater’s condition: thus it remains fixed as two separate
estimation problems.

▶ We need a way to resolve this as a one step problem: we ended up resolving this as a
Weighted Least Squares problem: Browne (1984)

▶ Aitken (1936) first introduced WLS, however it resolves upon the asymptotically
obtainable (and thus the Feasibility of GLS) of the true covariance matrix.
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Non-Gaussian latent variables II

▶ This produces consistent, but not efficient solutions. In the terms of KKT though, we
possess two measures of covariance which must be solvable for finite samples upon θ̂:
thus, we obtain a population of dispersions which possess the scores which are ordered
most accurately upon the sample.

▶ This is why we compare ML and GLS decompositions: asymptotically, the order must be
minimsed in order to identify the correct scoring. However, no scoring may be obtained
which does not also minimse the Kemeny distance of error from the target.

▶ Our problem is that the Kemeny metric does not allow direct interpretation of the
projection regression function upon the original domain.
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MLE upon an unusual topological space I
▶ An alternative function is offered by equation 4 though. Upon equation 1c exists

κ(X)n×n: if we sum over the rows and transpose, we obtain a vector Xn×1
∗ constructed

upon the ranks, rather than the scores.

▶ This provides the connection for ρκ as the ℓ2 approximation of Ξ by LS.

▶ Further, it allows us to define the target orthonormally upon the same function domain in
terms of n individual elements:

▶ This is ωn×1
i = diag(Ωn×n), i = 1, . . . , n, where the relative differences are produced by

the errors in rank orderings of ωi ∝ 1 + (Ŷi×1
∗ −Yi×1

∗ )2

(n2−n)2 .

Vp×p = X⊺
n×pΩn×nXn×p (6)

V = Ψ + ΛΦ⊺Λ. (7)
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MLE upon an unusual topological space II

▶ This expresses the errors in the expected rankings of the predicted scores Y, and
iteratively reweights the scores until the median expectation of error (the Kemeny
distance) is minimised and stable. Thus, the mean prediction converges to the unbiased
estimate of the median.

▶ Formally, this approach satisfies the KKT saddlepoint solution as a single procedure, and
provides an estimator whose solution is a Gauss-Markov linear solution.

▶ A linear GM solution is, by definition, a maximum likelihood estimator: thus, by
minimising the errors in ordering with the most accurate greedy score approximations, we
obtain a unique solution equivalent to Farkas’ lemma, almost surely.
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Factor Score Determinations I
▶ Thus by either the KKT or the MLE, we obtain a unique solution upon the Kemeny

objective function to the question: what are the unique best estimated latent factor
scores which are most correctly ordered?

wp×q
κ = (Ξ)−1

p×pΛp×q
κ Φq×q

κ (8a)

θn×q
∗ = Xn×pwp×q + ϵ, s.t. E(ϵ∗) = 0, (8b)

▶ If we obtain θ̂n×q, the GM solution to the best ordering of scores, we next require a set of
linear embeddings which best approximate these scores. Solving equation 8b upon S and
Λ̂p×q produces θ̂n×q such that the embeddings produce the unique smallest distance to
minρκ (θ̂

n×q
∗ , θ̂n×q), we obtain a unique solution via the KKT solution conditions.

▶ By Farkas’ lemma, such a solution always exists as well. Consider a set of factor score
estimates: the one which maximises τκ between the test scores and the latent scores also
satisfies the KKT conditions.
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Factor rotation indeterminacy I

▶ Require a means of assessment or estimation of the Tq×q rotation elements from the
Λp×q initial factor loading matrix, where p is the number of observed variables and q is
the estimated number of latent factors.

▶ We only provide the identification of a unique solution to the free parameter for the
oblimin rotation family ζ (Harman, 1960; Jennrich & Sampson, 1966; Jennrich, 1979).

Σp×p the Pearson variance-covariance matrix for
p random variables,

Ξp×p the Kemeny variance-covariance matrix for
p random variables

Λp×q the latent factor loadings estimated upon
the Kemeny matrix,

Λ̆p×q the latent factor loadings estimated upon
the Pearson correlation matrix, under the
Kendall sinusoidal transformation.

λa,b elements λa,b ∈ Λp×q∀{a, b}p,q
a=1,b=1

λ̆a,b elements λ̆a,b ∈ Λ̆p×q∀{a, b}p,q
a=1,b=1
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Factor rotation indeterminacy II

0 =
p

∑
a=1

q

∑
b=1

λ4
ab︸ ︷︷ ︸

f

− ζ

p
q

∑
b=1

( p

∑
a=1

λ2
ab

)2

︸ ︷︷ ︸
g

0 = f − ζ

p · g

(9a)

0 =
p

∑
a=1

q

∑
b=1

λ̆4
ab︸ ︷︷ ︸

f∗

− ζ

p
q

∑
b=1

( p

∑
a=1

λ̆2
ab

)2

︸ ︷︷ ︸
g∗

0 = f∗ − ζ

p · g∗

(9b)
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Factor rotation indeterminacy III

0 =
ζ

p
(p

ζ

p

∑
a=1

q

∑
b=1

λ4
a,b −

q

∑
b=1

(
p

∑
a=1

λ2
a,b)

2
)
− ζ

p
(p

ζ

p

∑
a=1

q

∑
b=1

λ̆4
a,b −

q

∑
b=1

(
p

∑
a=1

λ2
a,b)

2
)

ζ = p
( f − f∗

g − g∗
)

ζ = p
(

∑p
a=1 ∑q

b=1 λ4
a,b − ∑p

a=1 ∑q
b=1 λ̆4

ab(
∑q

b=1 λ2
ab
)2 − ∑q

b=1
(

∑p
a=1 λ̆2

ab
)2

)
. (9c)

▶ Thus follows a unique solution upon the estimated and almost surely observed un-rotated
factor loadings constructed from the Kemeny and Euclidean similarity matrices, each of
which are presumed observed upon the necessary unbiased minimum variance assumptions
upon a p-dimensional multivariate observed manifold.
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Factor rotation indeterminacy IV
▶ There is a clear paradox though, in that a unique ζ for the entire system of linear

equations would thus define a single common correlation coefficient for all latent variable
pairs, which is clearly nonsensical.

▶ We must therefore consider the pairwise evaluation of each element ϕr,s in the latent
variable correlation matrix, using a distinct ζr,s using the above definition upon the
individual paired subset of latent variables relative to all. We note that this procedure
explicitly resolves the iterative non-linear resolution which must otherwise be
conventionally employed to solve for T (Jennrich, 2002).

▶ Assume labels (r, s) ∈ (q
2), denoting the column-wise paired vectors of length q which

represent the factor loadings of each latent variable upon a given correlation between the
respective latent factors (thus ϕr,s ∈ Φr,s, r, s ∈ (q

2)), and each of the n2−n
2 elements may

be solved for (Jennrich & Sampson, 1966, p. 316-317):
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Factor rotation indeterminacy V
ζ2

r,s = 1 + 2ϕr,sδ + δ2

ζr,s =
1
tr

δ = tsζ

ϕr,s =
ζ2

r,s(t2
s − 1) + 1
2ζr,sts

ζ2
r,s = 1 + 2

( ζ2
r,s(t2

s − 1) + 1
2ζr,sts

)
· ts

ζr,s
+ (tsζr,s)

2

ts = ±

√
ζ2r,s − 1

ζr,s
, s.t, ζr,s /∈ {0,±1},

ϕr,s =

ζ2
r,s

(
±
√

ζ2r,s−1
ζr,s

)2

− ζ2
r,s + 1

2ζr,s ±
√

ζ2r,s−1
ζr,s

(10)
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Factor rotation indeterminacy I

▶ Jennrich (1979) does not fix ζ ∈ [0, 1] : negative values produced solutions with strong
regular convexity. As the estimation of ζ̂r,s is now an empirical construct conditionally
dependent upon the available sample, it follows that solved values of the two orthonormal
spaces may produce negative values, especially given the regular linear leptokurtosis of the
Kemeny metric space.

▶ There are 4 equations for each ϕr,s from equation 10 which are plotted in Figure 3,
denoting the existence of an over-determined, and thus ill-posed, estimation problem.

Figure: Plot of the domain ζ and correlation coefficient co-image ϕ by equation 10.
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Factor rotation indeterminacy II
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Factor rotation indeterminacy III

▶ Resolve this by examining the 4 ± possible combinations of the quadratic roots.

▶ Two pairs of the proposed latent roots are algebraically identical (noted by the mixture of
the arbitrary signs as either identical, or non-identical), thereby reducing 4 to the 2 with
common additions or subtractions. From the remaining set of 2 solutions, there is only
one viable image of ζr,s which maps onto the interval [−1, 1], as is necessary for a
correlation coefficient: thus, one of the two solutions is invalid upon the function
ϕr,s(ζr,s), resolving the over-determined solution set onto a single necessary correlation
coefficient. This however reduces the viable space upon which ζr,s may exist.

▶ Presents a unique correlation matrix Φq×q enabling the unique structural pattern
conditional upon the observed sample.
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Factor rotation indeterminacy IV

▶ The obtainment of T is of course a direct consequence of the estimated Φ solved upon
the estimated Λ to produce a rotated factor loading matrix:

Λp×qΦq×qΛ⊺
p×q = Λ̆p×qΛ⊺

p×q

Φq×q = (Λ⊺
p×q)

−1Λ̆p×qΛ̆⊺
p×q(Λp×q)

−1

Φq×q = (Λ⊺
p×q)

−1Ξp×pΛ−1
p×q

Tq×qT⊺
q×q = (Λ⊺

p×q)
−1Ξp×pΛ−1

p×q,

▶ where T obtained by Cholesky decomposition, wherein is computed the necessary rotation
matrix to produce the known target latent correlation matrix Φ as a decomposition of the
sufficient similarity matrix Ξ.
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