Power Analysis and Sample Size Planning in the Design of Two-Level Randomized Cost-Effectiveness Trials

Wei Li University of Florida Nianbo Dong UNC-Chapel Hill Rebecca Maynard University of Pennsylvania

Ben Kelcey University of Cincinnati Jessaca Spybrook Western Michigan University U

Yue Xu University of Florida

June 28, 2023 Modern Modeling Method

Outline of Talk

- Background and Study Purpose
- (Briefly) Review of Basic Concepts and Methods
 - Cost and cost-effectiveness analysis
 - Two-level designs, statistical analysis, and hypothesis testing
- Power and minimum detectable effect size (MDES) computation
- Illustration PowerUp!-CEA
- Discussion and Recommendations

Experimental Design in Education Research

- Gold standard for causal inference (Imbens & Rubin, 2015)
 - Widely used in education for policy and program evaluations
 - Often involve nested data structures (e.g., students nested within schools)
 - Historically, educational researchers focused on assessing the effectiveness of educational interventions through multilevel randomized controlled trials (MRCTs)
 - Ignored the cost of achieving these effects
 - Recent discussions in education call for evaluating the cost as well as the effectiveness to facilitate better decision-making
 - Multilevel randomized cost-effectiveness trials (MRCETs)

Cost-Effectiveness Analysis

- Policymakers and administrators usually request
 - Achieve maximum effectiveness with a given budget
 - Attain a particular level of effectiveness at a minimal cost
- Evaluations without a credible cost analysis can lead to misleading judgments
 - Evaluation of class size reduction policy (e.g., Levin et al., 1987)
 - Evaluation of online teacher PD programs (e.g., Lay et al., 2020)
- Major funding agencies in education started requiring that proposals for research include an economic evaluation
 - Cost analysis (CA)
 - Cost-effectiveness analysis (CEA)

Motivation: Gaps in Literature and Practices

CEA Studies in Education

- Usually collected cost date at the school level with a subsample
- Reported a descriptive measure (e.g., a cost-effectiveness ratio) without inference statistics such SEs or p-values
 - Limited discussion regarding how to conduct statistical inference for CEA in education

Statistical Power Analysis for MRCETs

- Help researchers decide the sample size needed at each level to guarantee a good enough chance of detecting the effect of interest
- Literature in health science:
 - Do not distinguish the ingredients of costs at different levels
 - Do not consider covariates effects
 - Only consider random effect models and two-level designs
- Recent studies in education extended power analysis methods for MRCETs (e.g., Li, Dong, Maynard, 2020; Li et al., 2022)
 - Incorporate alternative design and analysis method

Purposes of This Study

- There are three specific aims:
 - 1. Introduce the recent development in the design and analysis of MRCETs
 - a) How to conduct hypothesis testing for CEA
 - b) Sample size planning for the design of MRCETs
 - 2. Demonstrate power analysis using a free and user-friendly tool PowerUp!-CEA (Li et al., 2022)
 - 3. Provide recommendations on sample size planning for MRCETs

Ten Alternative Designs

Study Design	Label	Level of Clustering	Level of Treatment Assignment
Two-level Multisite Randomized Cost-	Design 1	2	1
Effectiveness Trials	Design 2	2	1
Two-level Cluster Randomized Cost-	Design 3	2	2
Effectiveness Trials	Design 4	2	2
	Design 5	3	1
Three-level Multisite Randomized Cost-	Design 6	3	1
Effectiveness Trials	Design 7	3	2
	Design 8	3	2
Three-level Cluster	Design 9	3	3
Randomized Cost- Effectiveness Trials	Design 10	3	3

Review of Basic Concepts: Two-Level Design and CEA

Cluster Randomized Design

 Schools are randomly assigned to one of two treatments, all students within schools receive the treatment:

	Trea	tm	ent	Control		
Level 2 (cluster)	School 1		School <i>m</i>	School <i>m</i> +1	School 2 <i>m</i>	
Level 1	Individual 1 Individual 2 : Individual <i>n</i>		Individual 1 Individual 2 : Individual <i>n</i>	Individual 1 Individual 2 : Individual <i>n</i>	Individual 1 Individual 2 Individual <i>n</i>	

Measures of CEA: INMB

Incremental Net Monetary Benefit (INMB)

 $INMB = \kappa \Delta E - \Delta C \quad (1)$

- ΔE : the incremental effect
- ΔC : the incremental cost
- κ: the monetary value that the decisionmaker assigns to a unit change in the outcome or their "willingness-to-pay (WTP)"
 - Both the effects and costs of interventions are scaled onto the same monetary scale through WTP
- Link the cost of implementing an intervention to its cost
- Advantages
 - Unbiased estimator
 - Easier interpretation: interventions with a positive INMB would always be deemed cost-effective
 - Facilitate statistical inference and power computation

Cluster Design: Two-Level Random Effect Model to Estimate the Incremental Effect

Level 1 (individual level):

 $Y_{ij}=\beta_{0j}+r_{ij},\ r_{ij}{\sim}N(0,\sigma^2\,)$

Level 2 (school level):

$$\beta_{0j} = \gamma_{00} + \gamma_{01}T_j + u_{0j}, \ u_{0j} \sim N(0, \tau^2)$$

Combined Model:

$$Y_{ij} = \gamma_{00} + \gamma_{01}T_j + u_{0j} + r_{ij} \quad (2)$$

 T_j is the intervention indicator, γ₀₁ represents the incremental effects (i.e., average treatment effect or ATE) on the effectiveness measures (e.g., test scores)

Cluster Design: Two-Level Random Effect Model to Estimate INMB

J schools and n students within each school; School-level intervention

$$E_{ij} = \gamma_{00}^{e} + \gamma_{A01}^{e} T_{j} + X_{ij}^{e} \Gamma_{10}^{e} + Z_{j}^{e} \Gamma_{02}^{e} + r_{A0j}^{e} + \varepsilon_{Aij}^{e} \quad (3)$$

$$C_{ij} = \gamma_{00}^{c} + \gamma_{A01}^{c} T_{j} + X_{ij}^{c} \Gamma_{10}^{c} + Z_{j}^{c} \Gamma_{02}^{c} + r_{A0j}^{c} + \varepsilon_{Aij}^{c} \quad (4)$$

• The estimated γ_{A01}^e (denoted as $\hat{\gamma}_{A01}^e$) and γ_{A01}^c (denoted as $\hat{\gamma}_{A01}^c$) represent ΔE and ΔC , and then

$$\widehat{INMB} = \kappa \widehat{\gamma}_{A01}^{e} - \widehat{\gamma}_{A01}^{c} \quad (5)$$
$$Var(\widehat{INMB}) = \kappa^{2} \times Var(\widehat{\gamma}_{A01}^{e}) + Var(\widehat{\gamma}_{A01}^{c}) - 2\kappa \times Cov(\widehat{\gamma}_{A01}^{e}, \widehat{\gamma}_{A01}^{c}) \quad (6)$$

Two-Level Multisite Design

 Individuals are randomly assigned to one of two treatments within their school:

Level 2 (Site)		School 1		School <i>m</i>	
		Individual 1		Individual 1	
	Treatment 1	:		:	
Level 1		Individual <i>n</i>		Individual <i>n</i>	
		Individual <i>n</i> +1		Individual <i>n</i> +1	
	Treatment 2	:		:	
		Individual 2 <i>n</i>		Individual 2 <i>n</i>	

Multisite Designs: Two-Level Random Effect Model to Estimate INMB

J schools and n students within each school; Student-level intervention

 $E_{ij} = \gamma_{00}^{e} + \gamma_{A10}^{e} T_{ij} + X_{ij}^{e} \Gamma_{20}^{e} + W_{j}^{e} \Gamma_{01}^{e} + W_{j}^{e} \Gamma_{11}^{e} T_{ij} + u_{A0j}^{e} + u_{A1j}^{e} T_{ij} + \varepsilon_{Aij}^{e} (7)$ $C_{ij} = \gamma_{00}^{c} + \gamma_{A10}^{c} T_{ij} + X_{ij}^{c} \Gamma_{20}^{c} + W_{j}^{c} \Gamma_{01}^{c} + W_{j}^{c} \Gamma_{11}^{c} T_{ij} + u_{A0j}^{c} + u_{A1j}^{c} T_{ij} + \varepsilon_{Aij}^{c} (8)$

- Note that W_j^e and W_j^c are grand-mean centered
- The estimated γ_{A10}^e (denoted as $\hat{\gamma}_{A10}^e$) and γ_{A10}^c (denoted as $\hat{\gamma}_{A10}^c$) represent ΔE and ΔC , and then

$$I\widehat{NMB} = \kappa\widehat{\gamma}^{e}_{A10} - \widehat{\gamma}^{c}_{A10} \quad (9)$$

 $Var(\widehat{INMB}) = \kappa^2 \times var(\widehat{\gamma}^e_{A10}) + var(\widehat{\gamma}^c_{A10}) - 2\kappa \times Cov(\widehat{\gamma}^e_{A10}, \widehat{\gamma}^c_{A10}) \quad (10)$

Multisite Designs: Two-Level Constant/Fixed Effect Model to Estimate INMB

Constant Effect Model

$$E_{ij} = \boldsymbol{\gamma_1^e} T_{ij} + X_{ij}^e \Gamma_3^e + \sum_{k=1}^J a_k^e Site_{k,ij} + \varepsilon_{Aij}^e$$
$$C_{ij} = \boldsymbol{\gamma_1^c} T_{ij} + X_{ij}^c \Gamma_3^c + \sum_{k=1}^J a_k^c Site_{k,ij} + \varepsilon_{Aij}^c$$

Fixed Effect Model

$$E_{ij} = \boldsymbol{\gamma_1^e} T_{ij} + X_{ij}^e \Gamma_3^e + \sum_{k=1}^J a_k^e Site_{k,ij} + \sum_{k=1}^J \boldsymbol{b_k^e} Site_{k,ij} T_{ij} + \varepsilon_{Aij}^e$$
$$C_{ij} = \boldsymbol{\gamma_1^c} T_{ij} + X_{ij}^c \Gamma_3^c + \sum_{k=1}^J a_k^c Site_{k,ij} + \sum_{k=1}^J \boldsymbol{b_k^c} Site_{k,ij} T_{ij} + \varepsilon_{Aij}^c$$

Note that Site dummy variables are grand-mean centered

Power and MDES Computation

Power Analysis

• We can test whether $I\overline{NMB} = 0$ using a *t*-test. Assuming the alternative hypothesis is true, the test statistic follows a non-central *t*-distribution, T', with a non-centrality parameter:

$$\lambda = \frac{INMB}{\sqrt{Var(INMB)}} \quad (11)$$

• Under these specifications, the statistical power of a two-tailed test is (note $t_0 = t_{1-\frac{\alpha}{2},df}$)

Power = $1 - P[T'(df, \lambda) < t_0] + P[T'(df, \lambda) \le -t_0]$ (12)

 MDES - the smallest true effect that has a good enough chance of being detected to be statistically significant

$$MDES = M_v * \sqrt{Var(INMB)}$$
 (13)

• M_v - the sum of two t statistics (Bloom, 1995). For two-tailed tests, which are usually applied, $M_v = t_{\alpha/2} + t_{1-\beta}$, where α represents the Type I error and β represents the Type II error for the tests

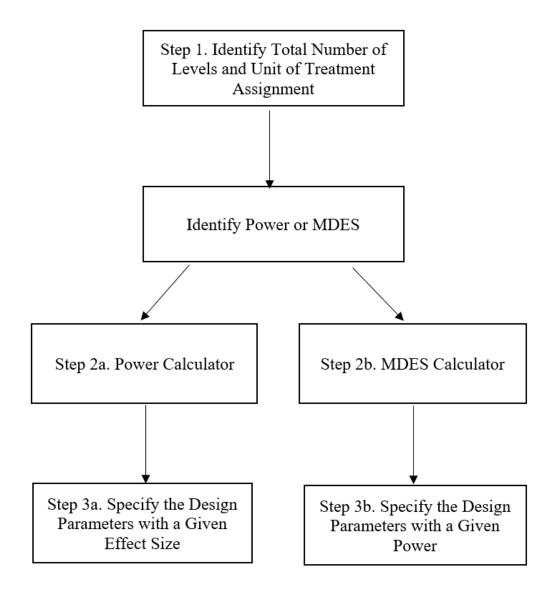
Table 1. Summary of the Standardized Noncentrality Parameter, MDES, and Degrees of Freedom

Model Name	Models	Standardized Noncentrality Parameter (I) and MDES	Degrees of Freedom
Cluster Design	$\begin{split} E_{ij} &= \gamma^{e}_{00} + \gamma^{e}_{A01}T_j + X^{e}_{ij}\Gamma^{e}_{10} + Z^{e}_{j}\Gamma^{e}_{02} + \gamma^{e}_{A0j} + \varepsilon^{e}_{Aij},\\ C_{ij} &= \gamma^{e}_{00} + \gamma^{e}_{A01}T_j + X^{e}_{ij}\Gamma^{e}_{10} + Z^{e}_{j}\Gamma^{e}_{02} + \gamma^{e}_{A0j} + \varepsilon^{e}_{Aij}. \end{split}$	$\begin{aligned} & \text{Standardized Noncentrality Parameter } (\lambda): \\ & INMB \sqrt{\frac{P(1-P)nJ}{\kappa^2[(nw_2^{\theta}-w_1^{\theta})\rho_e] + \psi_c[(nw_2^{c}-w_1^{c})\rho_c] + (\kappa^2w_1^{\theta}+\psi_cw_1^{c}) - 2\kappa\sqrt{\psi_c}(nw_2^{ec}r_2 + w_1^{ec}r_1)} \\ & \text{MDES:} \\ & \frac{M_{J-2-q}}{\sqrt{P(1-P)nJ}} \sqrt{\kappa^2[(nw_2^{\theta}-w_1^{\theta})\rho^e] + \psi_c[(nw_2^{c}-w_1^{c})\rho^c] + (\kappa^2w_1^{\theta}+\psi_cw_1^{c}) - 2\kappa\sqrt{\psi_c}(nw_2^{ec}r_2 + w_1^{ec}r_1)} \\ \end{aligned}$	J-2-q
Multisite Design: Random Effect Model	$\begin{split} E_{ij} &= \gamma^{s}_{00} + \gamma^{s}_{A10} T_{ij} + X^{s}_{ij} \Gamma^{s}_{20} + W^{s}_{j} \Gamma^{s}_{01} + W^{s}_{j} \Gamma^{s}_{11} T_{ij} + u^{s}_{A0j} + u^{s}_{A1j} T_{ij} + \varepsilon^{s}_{Aij}, \\ C_{ij} &= \gamma^{s}_{00} + \gamma^{s}_{A10} T_{ij} + X^{s}_{ij} \Gamma^{s}_{20} + W^{s}_{j} \Gamma^{c}_{01} + W^{s}_{j} \Gamma^{c}_{11} T_{ij} + u^{s}_{A0j} + u^{s}_{A1j} T_{ij} + \varepsilon^{s}_{Aij}. \end{split}$	$\begin{aligned} & \text{Standardized Noncentrality Parameter } (\lambda): \\ & INMB \sqrt{\frac{Jn}{\kappa^2(n\eta_e w_2^e - \phi w_1^e)\rho_e + \psi_c(n\eta_c w_2^e - \phi w_1^c)\rho_c + \phi(\kappa^2 w_1^e + \psi_c w_1^c) - 2\kappa\sqrt{\psi_c}(n\eta_{ec}r_2 w_2^{ec} + \phi r_1 w_1^{ec})} \\ & \text{MDES:} \\ & \frac{M_{J-1-q}}{\sqrt{Jn}} \sqrt{\kappa^2(n\eta_e w_2^e - \phi w_1^e)\rho_e + \psi_c(n\eta_c w_2^e - \phi w_1^c)\rho_c + \phi(\kappa^2 w_1^e + \psi_c w_1^c) - 2\kappa\sqrt{\psi_c}(n\eta_{ec}r_2 w_2^{ec} + \phi r_1 w_1^{ec})} \\ \end{aligned}$	J-1-q
Multisite Design: Constant Effect Model	$\begin{split} E_{ij} &= \gamma_1^e T_{ij} + X_{ij}^e \Gamma_s^e + \sum_{k=1}^J a_k^e Site_{k,ij} + \varepsilon_{Aij}^e, \\ C_{ij} &= \gamma_1^c T_{ij} + X_{ij}^c \Gamma_s^c + \sum_{k=1}^J a_k^c Site_{k,ij} + \varepsilon_{Aij}^c. \end{split}$	Standardized Noncentrality Parameter (λ): $INMB \sqrt{\frac{P(1-P)Jn}{\kappa^2 w_1^{e}(1-\rho_e) + \psi_c(1-\rho_c) - 2\kappa r_1 w_1^{ec} \sqrt{\psi}_c}}$ MDES: $\frac{M_{J(n-1)-1-q}}{\sqrt{P(1-P)nJ}} \sqrt{\kappa^2 w_1^{e}(1-\rho_e) + \psi_c(1-\rho_c) - 2\kappa r_1 w_1^{ec} \sqrt{\psi}_c}$	J(n-1)-1-q
Multisite Design: Fixed Effect Model	$\begin{split} E_{ij} &= \gamma_1^{e} T_{ij} + X_{ij}^{e} \Gamma_2^{e} + \sum_{k=1}^{J} a_k^{e} Site_{k,ij} + \\ &\sum_{k=1}^{J} b_k^{e} Site_{k,ij} T_{ij} + \varepsilon_{Aij}^{e}, \\ C_{ij} &= \gamma_1^{e} T_{ij} + X_{ij}^{e} \Gamma_2^{e} + \sum_{k=1}^{J} a_k^{e} Site_{k,ij} + \\ &\sum_{k=1}^{J} b_k^{e} Site_{k,ij} T_{ij} + \varepsilon_{Aij}^{e}. \end{split}$	Standardized Noncentrality Parameter (λ): $INMB \sqrt{\frac{P(1-P)Jn}{\kappa^2 w_1^{e}(1-\rho_e) + \psi_c(1-\rho_c) - 2\kappa r_1 w_1^{ec} \sqrt{\psi}_c}}$ MDES: $\frac{M_{J(n-2)-1-q}}{\sqrt{P(1-P)nJ}} \sqrt{\kappa^2 w_1^{e}(1-\rho_e) + \psi_c(1-\rho_c) - 2\kappa r_1 w_1^{ec} \sqrt{\psi}_c}$	J(n-2)-1-q

18

Design Parameters for Power Computation

- Adjustments common for all effectiveness studies:
 - Minimum relevant effect size
 - Sample size & allocation
 - Type I error
 - Nesting effects on outcome measures (i.e., ICCs)
 - Covariate adjustments
- Adjustments unique to MRCETs
 - Ratio of total variances of cost data & of effectiveness data
 - Nesting effects (i.e., ICCs) of cost data
 - Correlation between cost measures & effectiveness measures
 - Level of assignment & level of analysis


Illustration

Software

- PowerUp!-CEA (Li et al., 2022)
 - Free available from https://www.causalevaluation.org/multilevel-cost-effectiveness-trials.html
 - Compute power and MDES for two and three-level designs

	1	2	3	4	5	6	7
Study Design	Model Number	Number of Total Levels of Clustering	Unit of Treatment Assignment	Treatment Assignment Level	Cluster/Block Effect	Worksheet Power Calculation	Name for: MDES Calculation
	1.1	2	Individual	1	Random	MIRA2_1r_Power	MIRA2_1r_MDES
Multisite Random Assignment	1.2	2	Individual	1	Cosntant	MIRA2_1c_Power	MIRA2_1c_MDES
	1.3	2	Individual	1	Fixed	MIRA2_1f_Power	MIRA2_1f_MDES
Cluster Random Assignment	2.1	2	Cluster	2	Random	CRA2_2r_Power	CRA2_2r_MDES
	2.2	3	Cluster	3	Random	CRA3_3R_Power	CRA3_3r_MDES

A Three-Step Process

Demonstration of Power Computation for Twolevel Cluster Designs

Model 2.1: Power Calculator for Two-Level Cluster Random Assignment Design (CRA2_2)— Treatment at Level 2					
Assumptions		Comments			
Alpha Level (α)	0.05	Probability of a Type I error			
Two-tailed or One-tailed Test?	2				
Effect Size Difference	0.50	INMB standardized by the standard deviation of effectiveness data			
Willingness to Pay (κ)	2.00				
Р	0.50	Proportion of Level 2 units randomized to treatment: J _T / J			
ψ_c/ψ_e	0.50	Raito of the total variance of cost data to the total variance of effectiveness data			
Parameters for Effectiveness Data					
ρ^e	0.23	Proportion of variance in effectiveness measures that is between clusters			
R_{1e}^2	0.50	Proportion of variance of effectiveness data explained by level-1 covariates			
R_{2e}^2	0.50	Proportion of variance of effectiveness data explained by level-2 covariates			
Parameters for Cost Data					
ρ^c	0.23	Proportion of variance in cost measures that is between clusters			
R_{1c}^2	0.50	Proportion of variance of cost data explained by level-1 covariates			
R_{2c}^2	0.50	Proportion of variance of cost data explained by level-2 covariates			
Parameters for Covariation between Effectiveness Data and Cost Data					
<i>r</i> ₁	0.10	Standardized covariance between the effectiveness data and cost data at level-1			
r_2	0.10	Standardized covariance between the effectiveness data and cost data at level-2			
R_{1ec}^2	0.50	Proportion of the covariance explained by level-1 covariates			
R_{2ec}^2	0.50	Proportion of the covariance explained by level-2 covariates			
g*	1	Number of Level 2 covariates			
n (Average Cluster Size)	50	Mean number of Level 1 units per Level 2 cluster (geometric mean recommended)			
J (Sample Size [# of Clusters])	60	Number of Level 2 units			
corr ₁	0.13	Correlation between the effectiveness data and cost data at level-1			
corr ₂	0.43	Correlation between the effectiveness data and cost data at level-2			
Noncentrality Parameter	3.03	Automatically computed from the above assumptions			
Power (1- β)	0.846	Statistical power (1-probability of a Type II error)			

Note: (1) The parameters in yellow cells need to be specified. The power will be calculated automatically. (2) We always assume the effectiveness data are standardized with mean zero and standard deviation one.

Demonstration of MDES Computation for Twolevel Multisite RCETs: Random Effect Model

AsymptionsCommentsAlpha Level (α)0.05Probability of a Type I errorI'wor-tailed Test?2Power (1- β)0.80Statistical power (1-probability of a Type II error)Willingness to Pay (K)2.00P0.50Proportion of Level 1 units randomized to treatment: n_T / n ϕ 4.00 $\phi \pm 1/P(1-P)$ ψ_c/ψ_e 0.50Raito of the total variance of cost data to the total variance of effectiveness data ρ^e 0.23Proportion of variance of effectiveness data explained by level-1 covariates R_{1e}^2 0.50Proportion of variance of effectiveness data explained by level-1 covariates R_{2e}^2 0.50Proportion of variance of effectiveness data explained by level-1 covariates R_{2e}^2 0.50Proportion of variance of effectiveness data explained by level-1 covariates R_{2e}^2 0.50Proportion of variance of effectiveness data explained by level-1 covariates R_{2e}^2 0.50Proportion of variance of effectiveness data at level-2 R_{2e}^2 0.50Proportion of variance of cost data explained by level-1 covariates R_{2e}^2 0.50Proportion of variance of cost data explained by level-1 covariates R_{2e}^2 0.50Proportion of variance of cost data explained by level-1 covariates R_{2e}^2 0.50Proportion of variance of cost data explained by level-1 covariates R_{2e}^2 0.50Proportion of variance of cost data explained by level-1 covariates R_{2e}^2 0.50Proportion of variance of cost data explained by level	Model 1.1: MDES Calculator for 2-Level Multisite Individual Random Assignment (MIRA2_1r) Designs— Random Effect Model					
Two-tailed or One-tailed Test?2Power (1-5)0.80Statistical power (1-probability of a Type II error)Willingness to Pay (K)2.00P0.50Proportion of Level 1 units randomized to treatment: n_T / n ϕ 4.00 $\phi = 1/P(1 - P)$ ψ_r/ψ_x 0.50Raito of the total variance of cost data to the total variance of effectiveness dataParameters for Effectiveness data						
Power (1- β) 0.80 Statistical power (1-probability of a Type II error) Willingness to Pay (K) 200 P 0.50 Proportion of Level 1 units randomized to treatment: n_T / n ϕ 400 $\phi = 1/P(1 - P)$ ψ_c/ψ_e 0.50 Raito of the total variance of cost data to the total variance of effectiveness data $Parameters for Effectiveness data 0.50 Proportion of variance in effectiveness data explained by level-1 covariates R_{e}^2 0.50 Proportion of variance of effectiveness data explained by level-2 covariates R_{e}^2 0.50 Proportion of variance of effectiveness data explained by level-2 covariates R_{e}^2 0.50 Proportion of variance of effectiveness data explained by level-2 covariates R_{e}^2 0.50 Proportion of variance of cost data explained by level-1 covariates R_{e}^2 0.50 Proportion of variance of cost data explained by level-1 covariates R_{e}^2 0.50 Proportion of variance of cost data explained by level-1 covariates R_{e}^2 0.50 Proportion of variance of cost data explained by level-1 covariates R_{e}^2 0.30 Proportion of variance of cost data explained by level-1 covariates R_{e}^2 0.50$						
Willingness to Pay (K)2.00Proportion of Level 1 units randomized to treatment: n_T / n ϕ 4.00 $\phi = 1/P(1 - P)$ ψ_c / ψ_e 0.50Raito of the total variance of cost data to the total variance of effectiveness data ρ^e 0.23Proportion of variance in effectiveness measures that is between clusters R_{1e}^2 0.50Proportion of variance of effectiveness data explained by level-1 covariates R_{2e}^2 0.50Proportion of variance of effectiveness data explained by level-2 covariates R_{2e}^2 0.50Proportion of variance in cost measures that is between clusters R_{2e}^2 0.50Proportion of variance in cost measures that is between clusters R_{2e}^2 0.50Proportion of variance in cost measures that is between clusters R_{2e}^2 0.50Proportion of variance in cost measures that is between clusters R_{2e}^2 0.50Proportion of variance of cost data explained by level-1 covariates R_{2e}^2 0.50Proportion of variance of cost data explained by level-2 covariates R_{2e}^2 0.50Proportion of variance of cost data explained by level-2 covariates R_{2e}^2 0.50Proportion of variance of cost data explained by level-1 covariates R_{2e}^2 0.50Proportion of variance of cost data explained by level-2 covariates R_{2e}^2 0.50Proportion of variance of cost data explained by level-2 covariates R_{2e}^2 0.50Proportion of variance between the effectiveness data and cost data at level-2Parameters for Covariation between Effectiveness data a						
P0.50Proportion of Level 1 units randomized to treatment: n_T / n ϕ 4.00 $\phi = 1/P(1 - P)$ ψ_r/ψ_a 0.50Raito of the total variance of cost data to the total variance of effectiveness dataParameters for Effectiveness data0.50Raito of the total variance of cost data to the total variance of effectiveness data ρ^e 0.23Proportion of variance of effectiveness data explained by level-1 covariates R_{1a}^2 0.50Proportion of variance of effectiveness data explained by level-1 covariates R_{2a}^e 0.50Proportion of variance of effectiveness data explained by level-2 covariates η_e 0.30Proportion of variance in cost measures that is between clusters R_{2a}^e 0.30Proportion of variance in cost measures that is between clusters R_{2a}^e 0.50Proportion of variance of cost data explained by level-1 covariates η_e 0.50Proportion of variance in cost measures that is between clusters R_{1a}^e 0.50Proportion of variance of cost data explained by level-2 covariates R_{1a}^e 0.50Proportion of variance of cost data explained by level-1 covariates R_{2a}^e 0.50Proportion of variance of cost data explained by level-1 covariates R_{1a}^e 0.50Proportion of variance of cost data explained by level-2 covariates R_{2a}^e 0.50Proportion of variance of cost data explained by level-1 covariates R_{1a}^e 0.50Proportion of variance of cost data explained by level-1 covariates R_{1a}^e 0.50Proportion of varianc						
ϕ 4.00 $\phi = 1/P(1-P)$ ψ_c/ψ_e 0.50Raito of the total variance of cost data to the total variance of effectiveness dataParameters for Effectiveness data0.23Proportion of variance of effectiveness data explained by level-1 covariates P^e 0.50Proportion of variance of effectiveness data explained by level-1 covariates $R_{f_e}^2$ 0.50Proportion of variance of effectiveness data explained by level-2 covariates η_e 0.30Proportion of variance of effectiveness data explained by level-2 covariates η_e 0.30Proportion of variance in cost measures that is between clusters η_e 0.23Proportion of variance in cost measures that is between clusters $R_{f_e}^c$ 0.23Proportion of variance in cost measures that is between clusters $R_{f_e}^c$ 0.50Proportion of variance of cost data explained by level-1 covariates $R_{f_e}^c$ 0.50Proportion of variance of cost data explained by level-1 covariates $R_{f_e}^c$ 0.50Proportion of variance of cost data explained by level-2 covariates $R_{f_e}^c$ 0.50Proportion of variance of cost data explained by level-2 covariates η_e 0.30Proportion of variance of cost data explained by level-2 covariates $R_{f_e}^c$ 0.50Proportion of variance of cost data explained by level-2 covariates $R_{f_e}^c$ 0.50Proportion of variance of cost data explained by level-2 covariates $R_{f_e}^c$ 0.30Proportion of variance of cost data explained by level-2 covariates $R_{f_e}^c$ 0.30Proportion of the						
ψ_c/ψ_a 0.50Raito of the total variance of cost data to the total variance of effectiveness dataParameters for Effectiveness dataProportion of variance in effectiveness measures that is between clusters R_{1a}^{θ} 0.23Proportion of variance of effectiveness data explained by level-1 covariates R_{2a}^{θ} 0.50Proportion of variance of effectiveness data explained by level-2 covariates R_{2a}^{ϕ} 0.50Proportion of variance of effectiveness data explained by level-2 covariates R_{2a}^{ϕ} 0.50Proportion of variance of effectiveness data explained by level-2 covariates R_{ac}^{ϕ} 0.23Proportion of variance in cost measures that is between clusters R_{ac}^{ϕ} 0.23Proportion of variance in cost measures that is between clusters R_{ac}^{2} 0.50Proportion of variance of cost data explained by level-2 covariates R_{ac}^{2} 0.50Proportion of variance of cost data explained by level-1 covariates R_{ac}^{2} 0.50Proportion of variance of cost data explained by level-2 covariates R_{ac}^{2} 0.50Proportion of variance of cost data explained by level-2 covariates R_{ac}^{2} 0.50Proportion of variance of cost data explained by level-2 covariates R_{ac}^{2} 0.50Proportion of variance of cost data explained by level-2 covariates R_{ac}^{2} 0.50Proportion of variance of cost data explained by level-2 covariates R_{ac}^{2} 0.50Proportion of variance between the effectiveness data at level-2 R_{ac}^{2} 0.50Standardized covariance between the						
Parameters for Effectiveness dataProportion of variance in effectiveness measures that is between clusters ρ^e 0.23Proportion of variance of effectiveness data explained by level-1 covariates R_{1e}^2 0.50Proportion of variance of effectiveness data explained by level-2 covariates R_{2e}^2 0.50Proportion of variance of effectiveness data explained by level-2 covariates η_e 0.30Proportion of variance of effectiveness data explained by level-2 covariates ρ^e 0.23Proportion of variance in cost measures that is between clusters ρ^e 0.23Proportion of variance of cost data explained by level-1 covariates R_{1e}^2 0.50Proportion of variance of cost data explained by level-1 covariates R_{2e}^2 0.50Proportion of variance of cost data explained by level-2 covariates R_{2e}^2 0.50Proportion of variance of cost data explained by level-1 covariates R_{2e}^2 0.50Proportion of variance of cost data explained by level-2 covariates η_e 0.30Proportion of variance of cost data explained by level-2 covariates η_e 0.10Standardized covariance between the effectiveness data and cost data at level-2Parameters for Covariation between Effectiveness data and Cost Data10.10 r_1 0.10Standardized covariance between the effectiveness data and cost data at level-2 η_{ec} 0.23Proportions of the treatment by site covariances to the total covariance at level-2 R_{1ee}^2 0.50Proportions of the covariance explained by level-1 covariates R_{1ee}^2						
ρ^e 0.23Proportion of variance in effectiveness measures that is between clusters R_{1e}^e 0.50Proportion of variance of effectiveness data explained by level-1 covariates R_{2e}^e 0.50Proportion of variance of effectiveness data explained by level-2 covariates η_e 0.30Proportions of the treatment by site variances to the total variance of effectiveness data at level-2Parameters for Cost Data ρ^e 0.23Proportion of variance in cost measures that is between clusters R_{1c}^2 0.50Proportion of variance of cost data explained by level-1 covariates R_{2c}^2 0.50Proportion of variance of cost data explained by level-1 covariates R_{2c}^2 0.50Proportion of variance of cost data explained by level-2 covariates η_c 0.50Proportion of variance of cost data explained by level-2 covariates η_c 0.50Proportion of variance of cost data explained by level-2 covariates η_c 0.50Proportion of variance of cost data explained by level-2 covariates η_c 0.50Proportion of variance of cost data explained by level-2 covariates η_c 0.50Proportion of variance of cost data explained by level-2 covariates η_c 0.10Standardized covariance between the effectiveness data and cost data at level-2 r_1 0.10Standardized covariance between the effectiveness data and cost data at level-2 r_2 0.23Proportion of the covariance between the effectiveness to the total covariance at level-2 η_{ee} 0.23Proportion of the covariance explained by level-						
R_{1e}^2 0.50Proportion of variance of effectiveness data explained by level-1 covariates R_{2e}^2 0.50Proportion of variance of effectiveness data explained by level-2 covariates η_e 0.30Proportions of the treatment by site variances to the total variance of effectiveness data at level-2Parameters for Cost Data ρ^c 0.23Proportion of variance in cost measures that is between clusters R_{1c}^2 0.50Proportion of variance of cost data explained by level-1 covariates R_{2c}^2 0.50Proportion of variance of cost data explained by level-2 covariates R_{2c}^2 0.50Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportion of variance between the effectiveness data at level-2Parameters for Covariation between Effectiveness data and Cost Data r_1 r_2 0.10Standardized covariance between the effectiveness data and cost data at level-2 η_{ec} 0.23Proportions of the treatment by site covariances to the total covariance at level-2 η_{ec} 0.23Proportions of the treatment by site covariance at level-2 R_{2ec}^2 0.50Proportion of the covariance explained by level-1 covariates R_{2ec}^2 0.50Proportion of the covariance explained by level-2 covariates						
R_{2e}^2 0.50Proportion of variance of effectiveness data explained by level-2 covariates η_e 0.30Proportions of the treatment by site variances to the total variance of effectiveness data at level-2Parameters for Cost Data0.23Proportion of variance in cost measures that is between clusters ρ^c 0.23Proportion of variance of cost data explained by level-1 covariates R_{1c}^2 0.50Proportion of variance of cost data explained by level-2 covariates R_{2c}^2 0.50Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportion of variance of cost data explained by level-2 η_c 0.30Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportion of variance of cost data explained by level-2 η_c 0.30Proportion of the treatment by site variances to the total variance of cost data at level-2 η_c 0.10Standardized covariance between the effectiveness data and cost data at level-2 η_{ec} 0.23Proport						
η_e^- 0.30Proportions of the treatment by site variances to the total variance of effectiveness data at level-2Parameters for Cost Data0.23Proportion of variance in cost measures that is between clusters ρ^c 0.23Proportion of variance of cost data explained by level-1 covariates R_{1c}^2 0.50Proportion of variance of cost data explained by level-2 covariates R_{2c}^2 0.50Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportions of the treatment by site variances to the total variance of cost data at level-2Parameters for Covariation between Effectiveness data and Cost DataNone r_1 0.10Standardized covariance between the effectiveness data and cost data at level-1 r_2 0.10Standardized covariance between the effectiveness data and cost data at level-2 η_{ec} 0.23Proportions of the treatment by site covariance sto the total covariance at level-2 R_{1ec}^2 0.10Standardized covariance between the effectiveness data and cost data at level-2 R_{2ec}^2 0.50Proportion of the covariance explained by level-1 covariance at level-2 R_{2ec}^2 0.50Proportion of the covariance explained by level-2 covariates						
Parameters for Cost Data0.23Proportion of variance in cost measures that is between clusters ρ^c 0.23Proportion of variance in cost measures that is between clusters R_{1c}^2 0.50Proportion of variance of cost data explained by level-1 covariates R_{2c}^2 0.50Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportions of the treatment by site variances to the total variance of cost data at level-2Parameters for Covariation between Effectiveness data and Cost Datar1 r_1 0.10Standardized covariance between the effectiveness data and cost data at level-1 r_2 0.10Standardized covariance between the effectiveness data and cost data at level-2 η_{ec} 0.23Proportions of the treatment by site covariances to the total covariance at level-2 R_{1ec}^2 0.50Proportion of the covariance explained by level-1 covariates R_{2ec}^2 0.50Proportion of the covariance explained by level-2 covariates						
ρ^c 0.23Proportion of variance in cost measures that is between clusters R_{1c}^2 0.50Proportion of variance of cost data explained by level-1 covariates R_{2c}^2 0.50Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportions of the treatment by site variances to the total variance of cost data at level-2Parameters for Covariation between Effectiveness data and Cost Data0.10Standardized covariance between the effectiveness data and cost data at level-1 r_1 0.10Standardized covariance between the effectiveness data and cost data at level-2 η_{ec} 0.23Proportions of the treatment by site covariances to the total covariance at level-2 η_{ec} 0.50Proportion of the covariance explained by level-1 covariates R_{1ec}^2 0.50Proportion of the covariance explained by level-2 covariates R_{2ec}^2 0.50Proportion of the covariance explained by level-2 covariates						
R_{1c}^2 0.50Proportion of variance of cost data explained by level-1 covariates R_{2c}^2 0.50Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportions of the treatment by site variances to the total variance of cost data at level-2Parameters for Covariation between Effectiveness data and Cost Data0.10Standardized covariance between the effectiveness data and cost data at level-1 r_1 0.10Standardized covariance between the effectiveness data and cost data at level-2 η_{ec} 0.23Proportions of the treatment by site covariances to the total covariance at level-2 R_{1ec}^2 0.50Proportion of the covariance explained by level-1 covariates R_{2ec}^2 0.50Proportion of the covariance explained by level-2 covariates						
R_{2c}^2 0.50Proportion of variance of cost data explained by level-2 covariates η_c 0.30Proportions of the treatment by site variances to the total variance of cost data at level-2Parameters for Covariation between Effectiveness data and Cost Data0.10Standardized covariance between the effectiveness data and cost data at level-1 r_1 0.10Standardized covariance between the effectiveness data and cost data at level-2 η_{ec} 0.23Proportions of the treatment by site covariances to the total covariance at level-2 η_{ec} 0.50Proportion of the covariance explained by level-1 covariates R_{2ec}^2 0.50Proportion of the covariance explained by level-2 covariates						
η_c 0.30Proportions of the treatment by site variances to the total variance of cost data at level-2Parameters for Covariation between Effectiveness data and Cost Data n n r_1 0.10Standardized covariance between the effectiveness data and cost data at level-1 r_2 0.10Standardized covariance between the effectiveness data and cost data at level-2 η_{ec} 0.23Proportions of the treatment by site covariances to the total covariance at level-2 R_{lec}^2 0.50Proportion of the covariance explained by level-1 covariates R_{2ec}^2 0.50Proportion of the covariance explained by level-2 covariates						
n_{1} 0.10 Standardized covariance between the effectiveness data and cost data at level-1 r_{1} 0.10 Standardized covariance between the effectiveness data and cost data at level-1 r_{2} 0.10 Standardized covariance between the effectiveness data and cost data at level-2 η_{ec} 0.23 Proportions of the treatment by site covariances to the total covariance at level-2 R_{1ec}^{2} 0.50 Proportion of the covariance explained by level-1 covariates R_{2ec}^{2} 0.50 Proportion of the covariance explained by level-2 covariates						
r_1 0.10Standardized covariance between the effectiveness data and cost data at level-1 r_2 0.10Standardized covariance between the effectiveness data and cost data at level-2 η_{ec} 0.23Proportions of the treatment by site covariances to the total covariance at level-2 R_{1ec}^2 0.50Proportion of the covariance explained by level-1 covariates R_{2ec}^2 0.50Proportion of the covariance explained by level-2 covariates						
r_2 0.10 Standardized covariance between the effectiveness data and cost data at level-2 η_{ec} 0.23 Proportions of the treatment by site covariances to the total covariance at level-2 R_{1ec}^2 0.50 Proportion of the covariance explained by level-1 covariates R_{2ec}^2 0.50 Proportion of the covariance explained by level-2 covariates						
η_{ec} 0.23 Proportions of the treatment by site covariances to the total covariance at level-2 R_{1ec}^2 0.50 Proportion of the covariance explained by level-1 covariates R_{2ec}^2 0.50 Proportion of the covariance explained by level-2 covariates						
R_{1ec}^2 0.50Proportion of the covariance explained by level-1 covariates R_{2ec}^2 0.50Proportion of the covariance explained by level-2 covariates						
R_{2ec}^2 Proportion of the covariance explained by level-2 covariates						
n (Average Cluster Size) 60 Mean number of Level 1 units per Level 2 cluster (geometric mean recommended)						
J (Sample Size [# of Clusters]) 50 Number of Level 2 units						
corr ₁ 0.13 Correlation between the effectiveness data and cost data at level-1						
corr2 0.43 Correlation between the effectiveness data and cost data at level-2						
M (Multiplier) 2.86 Computed from T ₁ and T ₂						
T1 (Precision) 2.01 Determined from alpha level, given two-tailed or one-tailed test						
T ₂ (Power) 0.85 Determined from given power level						
MDES 0.193 Minimum Detectable Effect Size Standardized by the Standard Deviation of the Effectiveness Data						

Note: (1)The parameters in yellow cells need to be specified. The MDES will be calculated automatically. (2) We always assume the effectiveness data are standardized with mean zero and standard deviation one.

Discussion and Recommendations

Comparisons between Power Analyses for MRCTs and MRCETs

- Multilevel randomized controlled trials (MRCTs)
 - Measure of interests : $ATE = \Delta E \neq 0$
 - Power analysis only considers the variance of the effectiveness measure
- Multilevel randomized cost-effectiveness trials (MRCETs)
 - Measure of interest $INMB = \kappa \Delta E \Delta C \neq 0$
 - Power analysis considers both the variance of the effectiveness measure and the cost measure and their covariance
- In general, the power for MRCETs is smaller with the same design parameters
 - If the intervention could save cost or when cost and effectiveness are positively correlated, the power for MRCTs might be smaller

Recommendations (1)

- Account for cost variation and the nested structure of cost data when planning and analyzing MRCETs
- Including covariates adjustment is crucial for increasing power, and the covariates at higher-level have a larger impact on power than those at the first level
- Other things being equal, the power of a multisite design is larger than that of a cluster design
 - Power for random effect models is smaller than those from constant/fixedeffect models
 - Power is the same for constant and fixed effect models
- Balanced design is preferred when the budget for sampling treatment and control units is similar

Recommendations (2)

- When the budget for cost data collection is limited
 - Consider an unbalanced design, especially when the cost of sampling a control unit is smaller
 - Collect cost data at the cluster level
- Select appropriate references values of design parameters
 - Limited information regarding the benchmarks for cost data variation, ICC, correlations between cost and effectiveness measures
 - Identify a lower bound based on the plausible values of the design parameters

Acknowledgement

• This work is supported by National Science Foundation through a research grant titled "A Statistical Framework and Tools for Planning Multilevel Randomized

Cost-Effectiveness Trials" (Co-PIs: Nianbo Dong, Rebecca Maynard, Ben Kelcey, Jessaca Spybrook, and Wei Li) (Award Number [DRL-2000705])

 The opinions expressed herein are those of the authors and not the funding agency.

Questions or Comments?

Thank you!

wei.li@coe.ufl.edu

https://www.causalevaluation.org/multilevel -cost-effectiveness-trials.html