

Confidence Interval of Effect Size in Longitudinal Growth Models Zonggui Li & Ehri Ryu

Department of Psychology and Neuroscience, Boston College zonggui.li@bc.edu

回机纸板

Abstract

When modeling longitudinal data, longitudinal growth models (LGMs) are commonly used. In this study, we examine the performance of the bootstrap confidence intervals (CIs) for R² measures in LGMs. Two bootstrap methods, parametric and non-parametric residual based bootstrapping are used. With each bootstrap method, the CIs are computed using four different ways: normal, basic, percentile, and BCa. Preliminary results indicate that the parametric bootstrap method performs better for all types of CIs, especially with a small sample size. A larger sample size leads to a higher 95% CI coverage rate and narrower width for both bootstrap methods. Logit-transformation improved the coverage rate for normal CI and basic CI.

Method

Background

Longitudinal Growth Models

Level-1:

$$y_{ti} = \beta_{0i} + \beta_{1i} Time_{ti} + e_{ti} \ e_{ti} \sim N(0, \sigma^2)$$
Level-2:

$$\beta_{0i} = \gamma_{00} + U_{0i} \qquad \begin{pmatrix} U_{0i} \\ \vdots \\ \vdots \end{pmatrix} \sim MVN(\mathbf{0}, \mathbf{T})$$

$$\begin{array}{c} \rho_{0i} - \gamma_{00} + U_{0i} \\ \beta_{1i} = \gamma_{10} + U_{1i} \\ \end{array} \qquad \begin{pmatrix} u_{1i} \\ U_{1i} \end{pmatrix} \sim MVN(0, \mathbf{T}) \\ \mathbf{T} = \begin{pmatrix} \tau_{00} & \tau_{01} \\ \tau_{10} & \tau_{11} \end{pmatrix}$$

R² computation in LGMs

• Model-implied Variance:

$$t^2 = \frac{\text{Variance explained by the effect of interest}}{\text{Total Variance}}$$

• R² computation:

$$R^{2} = \frac{\gamma'(\mathbf{D}_{f}\Sigma\mathbf{D}_{f})\gamma + tr((\mathbf{D}_{r}T\mathbf{D}_{r})\Sigma_{r}) + \mu'(\mathbf{D}_{r}T\mathbf{D}_{r})\mu}{\gamma'\Sigma\gamma + tr(T\Sigma_{r}) + \mu'T\mu + \sigma^{2}}$$

1	Table 1: Research Design						
I	Bootstrap methods			Confidence interval computing methods			Transformation
I	Non-parametric residual-based bootstrapping (Carpenter et al., 1999) Parametric residual-based bootstrapping (Goldstein, 2010)						methods
				Normal CI (Davison & Hinkley, 1997) Basic CI (Davison & Hinkley, 1997)			Original (no transformation)
							Logit
I				Percentile CI (Efron, 1982)			Log
t					oias-corrected and ad n, 1987)		
				Stude	tudentized CI (Davison & Hinkley, 1997)		
	Data simulation conditions						Total
	Effect size	Intra-class correlation (ICC)	Unit size (# of points)	f time	Cluster size (# of individuals)	Level-1 residual covariance:	$3 \times 2 \times 2 \times 3 = 36$
	0.1, 0.3, 0.7	0.2, 0.5	Balanced: 4, 6 Unbalanced: Sample attrition with 10%, 200	on %	50, 100, 300	Normal Diagonal, CS, AR(1), CSH, ARH(1)	1000 data replications 1000 bootstrap replications

Note: CS=Compound Symmetry, AR(1)=Homogeneous First-order Autoregressive, CSH=Heterogeneous Compound Symmetry, ARH(1)=Heterogeneous First-order Autoregressive

Figure 2: 95% CI width across sample size

Conclusion Sample size

With a small sample size, the nonparametric bootstrap produces low 95% CI coverage rate for all types CIs

A larger sample size leads to a higher 95% CI coverage rate and narrower CI width for both parametric and non-parametric bootstrap methods

Transformation

Logit transformation will increase the coverage rate for normal CI and basic CI

Bootstrap method

The parametric bootstrap method produces a higher 95% CI coverage rate for all types CIs

ICC level and effect size level

Higher ICC and higher effect size lead to a higher 95% CI coverage rate for both parametric and nonparametric bootstrap CIs.