Subjective Well-being and Proactive Social Isolation during COVID-19: A 3-Wave Longitudinal Study across 1 year

Tingshu Liu, Rodica I. Damian, & David Francis

Background

Background

- Subjective well-being (SWB) refers to people's subjective happiness and good functioning
 - life satisfaction
 - o positive emotions
 - negative emotions

Added: depression and anxiety

- Different indicators of SWB can change in different patterns in response to a same traumatic event — most studies only included 1 or 2
- Social isolation: sustained absence of social interaction or lack of or very few social contact/ties
- Proactive social isolation: sustained refusal or limitation of one's own normal social interaction/contact

Fischer et al., 2011; Hoppmann et al., 2021; Infurna, & Luthar, 2017; Lucas et al., 1996; Wilson, 1987

Bachtiger et al., 2021; Fancourt et al., 2021; Groarke et al., 2021; Kuhn et al., 2021; McPherson et al., 2021; Megalakaki et al., 2021; Pieh et al., 2021; Quaglieri et al., 2021; Savage et al., 2021; Thygesen et al., 2021; van der Velden et al., 2021; Wang et al., 2021

Bonanno et al., 2011

Background

- Social isolation <-> a series of negative psychological consequences
- Proactive social isolation
 - Limited research
 - Solitude: higher life satisfaction and lower loneliness when actually desire to be alone
 - Sustained solitude?
 - Self-determination theory: autonomy
 - but relatedness?

Chua & Koestner, 2008; Leary et al., 2003; Ryan & Deci, 2000

Hypotheses

- H1: subjective well-being remained stable (resilience)
- O H2: subjective well-being increased (recovery)
- H3: different subjective well-being indicators had different change patterns
- H4: higher levels of proactive social isolation would be associated with lower subjective well-being
 - (4a) at the between-person level
 - (4b) at the within-person level

H5: younger people (H5a), women (H5b), minoritized groups (e.g., African Americans and/or Latinos) (H5c), and people with lower income (H5d) had lower SWB

Competing

hypotheses

Timeline

Participants

MTurk sample (N = 972)

58% male
38.61 years on average (SD = 11.83, range 18-78)
\$46,178 annual income on average

	Sample Race/Ethnicity	2020 US Census Race/Ethnicity
White, not Hispanic/Latino	<u>69.9%</u>	60.1%
<u>Black/African-American</u>	<u>15.4%</u>	13.4%
Asian/Asian-American	7.3%	5.9%
Latino/Hispanic	5.1%	18.5%
Multi-race	1.5%	2.8%
Native American/Native Hawaiian/Pacific Islander	0.6%	1.5%
Other	0.2%	N/A

Measures

Satisfaction with Life Scale (SWLS) Positive and Negative Affect Schedule (PANAS) Patient Health Questionnaire (PHQ-9) Generalized anxiety disorder (GAD-7)

Subjective well-being

Proactive social isolation

---how much they proactively limited travel, social interaction, and more

---how long they have been in self-quarantine

Demographics: age, gender, race/ethinicity, and income

Diener et al., 1985; Kroenke et al., 2001; Spitzer et al., 2006; Watson et al., 1988

Analyses

- R and SPSS were used
- Principal Component Analysis (PCA) on proactive social isolation items
 - Multiple imputation for missing data
 - Extracted the first component
- All other missing data: FIML
- Well-being change patterns
 - measurement invariance across time (Configural, weak, strong, and strict)
 - latent growth curve models (No growth, Linear growth, and Latent basis)
- Proactive social isolation and well-being
 - Multi-level modeling, proactive social isolation as a time-varying covariate
 - separated between- and within-person effects
 - Demographic controls: age, gender, race/ethnicity, and income

Latent growth curve model

Results

- Subjective well-being change during the pandemic
 - Life satisfaction and positive emotions remained stable (resilience)
 - Negative emotions, depression and anxiety decreased (recovery)

Results/discussion

- Multilevel models
 - Proactive social isolation <-> lower levels of all five well-being indicators
 - Consistent with the deactivation effect
 - When people change strategy to proactively isolate themselves more than the person-specific mean, they had more positive emotions and lower depression

Results/discussion

Multilevel models with demographics

- Age <-> higher level positive emotions, and lower levels of negative emotions, depression, and anxiety
- Person of Color <-> higher levels of negative emotions, depression, and anxiety
- Income <-> higher levels of life satisfaction and positive emotions
- Gender: not a significant predictor

Limitations

- Did not have pre-pandemic data to compare with
- Did not have imposed isolation to compare with proactive isolation – but this could be the next step
- Only 3 waves of data
 - Ideally more than 3 waves are recommended to distinguish the between- and within-person differences while controlling for measurement errors

Thanks!

Any questions?

Contact me at: suraliu22@gmail.com

Variables	1	2	3	4	5	6	7	8	9	
1 age	-									
2 Female	.19	-								
3 POC	24	12	-							
4 Income In	.06	13	.03	-						
5 SWLS_M	.07	.03	09	.15	-					
6 PE_M	.06	01	01	.24	.72	-				
7 NE_M	21	.13	.01	01	42	36	-			
8 Depression M	20	.05	05	07	50	50	.80	-		
9 <u>Anxiety_M</u>	24	.11	04	09	45	44	.89	.88	-	
10 Isolation M	.14	.16	03	06	08	04	10	07	12	

Supplement A: Intercorrelations for the main variables

Notes. These analyses used a FIML estimation based on N = 972. Bold indicates p < .05. Gender and race were dummy coded, 0 = male, 1 = female; 0 = White/European American, 1 = Person of Color (POC). M means the average score across the three time points. In means log transformed. SWLS = life satisfaction; PE = positive emotions; NE = negative emotions; Isolation = proactive social isolation.

Supplement B: measurement invariance across time

	Model	χ ²	df.	р	RMSEA	90% CI	FI	CFI	Model Evaluation
Life Satisfaction	Configural/Pattern Invariance	1793.02	88	.000	.141	[.136, .147]	.828		
	Weak/Loading/Metric Invariance	1795.77	96	.000	.135	[.130, .140]	.828	.001	Pass
	Strong/Scalar/Intercept Invariance	1811.31	104	.000	.130	[125, .135]	.828	.001	Pass
	Strict Invariance	1818.25	114	.000	.124	[.119, .129]	.828	.000	Pass
Positive Emotions	Configural Invariance	388.49	25	.000	.122	[.112, .133]	.941		
	Weak Invariance	393.58	29	.000	.114	[.104, .124]	.941	.000	Pass
	Strong Invariance	404.14	33	.000	.108	[.098, .117]	.940	.001	Pass
	Strict Invariance	410.02	39	.000	.099	[.090, .108]	.940	.000	Pass
Negative Emotions	Configural Invariance	221.31	25	.000	.090	[.079, .101]	.971		
	Weak Invariance	234.03	29	.000	.085	[.075, .096]	.970	.001	Pass
	Strong Invariance	238.59	33	.000	.080	[.071, .090]	.970	.000	Pass
	Strict Invariance	266.31	39	.000	.077	[.069, .086]	.967	.003	Pass
Depression	Configural Invariance	917.66	25	.000	.192	[.181, .203]	.875		
-	Weak Invariance	960.80	29	.000	.182	[.172, .192]	.869	.005	Pass
	Strong Invariance	981.06	33	.000	.172	[.163, .182]	.867	.002	Pass
	Strict Invariance	1042.79	39	.000	.163	[.155, .172]	.859	.008	Pass
Anxiety	Configural Invariance	434.63	25	.000	.130	[.119, .141]	.937		
-	Weak Invariance	452.59	29	.000	.123	[.113, .133]	.935	.002	Pass
	Strong Invariance	473.23	33	.000	.117	[.108, .127]	.932	.003	Pass
	Strict Invariance	505.82	39	.000	.111	[.103, .120]	.928	.004	Pass

Notes. These analyses used a FIML estimation based on N = 972. A relative model pass was determined based on Δ CFI being < .01

Supplement C: Latent growth curve models

Latent growth curve models		Intercept		Slope		Model Fit			
		Mean (p-	Variance (p-	Mean (p-	Variance (p-	$\chi^2(df, p-value)$	RMSEA (90%	CFI	
SWB indicator	models	value)	value)	value)	value)		CI)		
Life	No growth	.20 (.001)	28.60 (.000)	N/A	N/A	1808.13(116, .000)	.123[.118, .128]	.829	
Satisfaction	Linear growth	25 (.000)	32.12 (.000)	07(.282)	.14(.584)	1804.87(113, .000)	.124[.119, .129]	.829	
	Latent basis	3.94 (.000)	52.54(.035)	07(.298)	.54(.300)	1804.77 (112, .000)	.125[.120; .130]	.829	
Positive	No growth	.07(.133)	6.94 (.000)	N/A	N/A	409.12(43, .000)	.094[.085, .102]	.941	
Emotions	Linear growth	.30 (.000)	7.45(.000)	.06(.186)	.06(.526)	406.75(40, .000)	.097[.089, .106]	.941	
	Latent basis	.50 (.000)	10.44(.000)	.04(.289)	.23(.051)	398.21(39, .000)	.097[.089, .106]	.942	
Negative	No growth	.10(.028)	7.98 (.000)	N/A	N/A	297.52(43, .000)	.078[.070, .087]	.963	
Emotions	Linear growth	.77(.000)	8.94 (.000)	20 (.000)	.12(.177)	273.17(40, .000)	.077[.069, .086]	.966	
	Latent basis	.28 (.000)	9.33 (.000)	23 (.000)	.18(.047)	270.24(39, .000)	.078[.069, .087]	.966	
Depression	No growth	.02(.347)	.70 (.000)	N/A	N/A	1047.48(41, .000)	.159[.151, .168]	.859	
	Linear growth	.04(.157)	.72(.000)	05 (.000)	.004(.822)	1021.99(38, .000)	.163[.155, .172]	.862	
	Latent basis	.10 (.000)	.73(.000)	05 (.000)	.01(.738)	1021.73(37, .000)	.166[.157, .175]	.862	
Anxiety	No growth	.28 (.000)	8.54(.000)	N/A	N/A	509.21(43, .000)	.106[.098, .114]	.928	
	Linear growth	.44(.000)	11.09 (.000)	17 (.001)	.27(.033)	489.60(40, .000)	.108[.099, .116]	.931	
	Latent basis	2.52 (.000)	10.10 (.000)	20 (.000)	.16(.228)	487.96(39, .000)	.109[.100, .118]	.931	

Note. These analyses used a FIML estimation based on N = 972. Bold indicates statistical significance at p < .01, because as pre-registered, we adjusted the p value upon the plan to fit 5 comparisons.

Supplement D: Multi-level models with social isolation as a timevarying covariate

Predictors	Life satisfaction		Positiv	Positive emotions		Negative emotions		Depression		Anxiety	
	β	95% CI	β	95% CI	β	95% CI	β	95% CI	β	95% CI	
isolation between	16	[23,09]	14	[21,06]	23	[-0.30, -0.16]	20	[-0.26, -0.14]	16	[-0.23, -0.09]	
person											
isolation within	.00	[02, .03]	.04	[.02, .07]	02	[-0.05, 0.00]	04	[-0.06, -0.02]	02	[-0.05, 0.00]	
person											
demographics											
age	.04	[02, .11]	.10	[.03, .17]	09	[-0.15, -0.02]	10	[-0.16, -0.03]	12	[-0.19, -0.06]	
female	.03	[03, .10]	04	[11, .02]	.02	[04, .09]	01	[08, .05]	.07	[.00, .14]	
POC	.02	[04, .09]	.06	[01, .13]	.24	[0.18, 0.30]	.22	[0.15, 0.28]	.17	[0.10, 0.23]	
income	.19	[.13, .25]	.21	[.15, .28]	02	[08, .05]	01	[07, .05]	04	[1003]	
Model fit	$\chi^2(df,$	<i>p</i>) =	$\chi^2(df, p$) =	$\chi^2(df, p)$	$\chi^2(df, p) =$		$\chi^2(df, p) =$		$\chi^2(df, p) =$	
	2128.	86(230, .000)	635.22	(113, .000)	486.49(113, .000)		1247.	1247.31(114, .000)		0(113, .000)	
	CFI =	.834	CFI = .	933	CFI = .956		CFI =	CFI = .844		CFI = .920	
	RMSI	EA[90% CI]	RMSE.	A[90% CI]	<u>RMSEA[</u> 90% CI]		<u>RMSEA[</u> 90% CI]		RMSE	<u>RMSEA[</u> 90% CI]	
	= .093	8[.089, .097]	= .070[.064, .075]	=.059[.054, .064]		=.102[.097, .107]		=.077[.072, .082]		

Notes. These analyses used a FIML estimation based on N = 955. Latent levels were included as outcomes in the models. Race/ethnicity was dummy coded: 0 = White/European American, 1 = Person of Color (POC). Bold indicates statistical significance at p < .01, because it was adjusted to fit a total of 5 regression models as pre-registered. Isolation = proactive social isolation.

21

Supplement E: Attrition analysis

- No difference in racial composition, income, positive emotions, or anxiety
- People who dropped out
 - Were <u>younger</u> (ΔM = 3.90, *t* = 4.96, *p* < .001, *d* = .33)
 - Were more likely to be men (△M = .10, where male = 0, female = 1, t = 3.10, p = .002, d = .21)
 - Had <u>higher life satisfaction ($\Delta M = .23, t = 3.44, p < .001, d = .23$)</u>
 - Had <u>higher depression ($\Delta M = .39, t = 8.38, p < .001, d = .54</u>)</u>$
 - Had <u>higher negative emotions</u> ($\Delta M = .46, t = 7.74, p < .001, d = .49$)

Satisfaction with Life Scale

- 5-item scale to measure global life satisfaction: strongly disagree (1) to strongly agree (5)
- E.g., "In most ways my life is close to my ideal"
- Internal reliability .92-.93

Positive and Negative Affect Schedule (PANAS)

- 20 items to measure positive and negative emotions: very slightly or not at all (1) to extremely (5)
- E.g. excited, nervous
- Internal reliability
 - Positive emotions .93-.94
 - Negative emotions .93-.95

Patient Health Questionnaire (PHQ-9)

- 9 items to measure depression: not at all (0) to nearly every day (3)
- E.g., "Feeling tired or having little energy"
- Internal reliability .90-.93

Generalized anxiety disorder (GAD-7)

- 7 items to measure anxiety: not at all (0) to nearly every day (3).
- E.g. "Feeling nervous, anxious, or on edge"
- Internal reliability .93-.94

Proactive social isolation

Over the past few months, since COVID-19 was declared a pandemic, how often have you engaged in the following behaviors? (slider: "0% of the time" to "100% of the time")

- 1. Limited travel using public transport
- 2. Moved social interactions (with people who live outside my household) to online/social media instead of in-person
- 3. Avoided crowds of people
- 4. Avoided contact with people who were sick

5. Approximately how many weeks have you been in self-quarantine (i.e., stayed home, except for essential errands like buying food, exercising away from others, medical appointments)? ____ [enter "0" weeks if you did not self-quarantine at all]

Demographics

- Age
- Gender: 0 = male, 1 = female
- Race/ethnicity: 0 = White/European American, 1 = Person of Color (POC)
- Annual household income
 - US dollars reported (log-transformed)

Major references

Bonanno, G. A., Westphal, M., & Mancini, A. D. (2011). Resilience to loss and potential trauma. Annual Review of Clinical Psychology, 7, 511–535.

Bidzan-Bluma, I., Bidzan, M., Jurek, P., Bidzan, L., Knietzsch, J., Stueck, M., & Bidzan, M. (2020). A Polish and German Population Study of Quality of Life, Well-Being, and Life Satisfaction in Older Adults During the COVID-19 Pandemic. *Frontiers in psychiatry*, 11, 585813.

Castellini, G., Rossi, E., Cassioli, E., Sanfilippo, G., Innocenti, M., Gironi, V., ... Ricca, V. (2021). A longitudinal observation of general psychopathology before the COVID-19 outbreak and during Lockdown in Italy. *Journal of Psychosomatic Research*, 141, 110328. doi:10.1016/j.jpsychores.2020.110328

Diener, E. D., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The satisfaction with life scale. Journal of Personality Assessment, 49, 71-75.

Fancourt, D., Steptoe, A., & Bu, F. (2021). Trajectories of anxiety and depressive symptoms during enforced isolation due to COVID-19 in England: A longitudinal observational study. *The Lancet Psychiatry*, 8(2), 141–149.

Fischer, R., & Boer, D. (2011). What is more important for national well-being: Money or autonomy? A meta-analysis of well-being, burnout, and anxiety across 63 societies. *Journal of Personality and Social Psychology*, *101(1)*, 164–184.

Groarke, J. M., McGlinchey, E., McKenna-Plumley, P. E., Berry, E., Graham-Wisener, L., & Armour, C. (2021). Examining temporal interactions between loneliness and depressive symptoms and the mediating role of emotion regulation difficulties among UK residents during the COVID-19 lockdown: Longitudinal results from the COVID-19 psychological wellbeing study. *Journal of Affective Disorders*, 285, 1–9.

Hamaker, E. L., & Muthén, B. (2020). The fixed versus random effects debate and how it relates to centering in multilevel modeling. *Psychological Methods*, 25(3), 365–379. https://doi.org/10.1037/met0000239

Infurna, F. J., & Luthar, S. S. (2017). The multidimensional nature of resilience to spousal loss. Journal of Personality and Social Psychology, 112(6), 926-947.

Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: validity of a brief depression severity measure. Journal of General Internal Medicine, 16, 606-613.

Lucas, R. E., Diener, E., & Suh, E. (1996). Discriminant validity of well-being measures. Journal of Personality and Social Psychology, 71(3), 616-628.

Spitzer, R. L., Kroenke, K., Williams, J. B., & Löwe, B. (2006). A brief measure for assessing generalized anxiety disorder: the GAD-7. Archives of Internal Medicine, 166, 1092-1097.

Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. *Journal of Personality and Social Psychology*, *54*, 1063.