Evaluating the Performance of the Bayes Factor for Testing Mediation Effects

Introduction

Frequently of interest: *Testing* the presence vs. absence of a *media* of a treatment X (e.g., intervention assignment, antecedent variable) outcome Y via a hypothesized mediator M.

Most of the tests for mediation: NHST (null hypothesis significance testing)

• e.g.: Sobel test, joint significance test, interval-based tests (e.g., bootstrap interval, credible interval).

Bayes factor (BF) – Promising alternative to NHST

- Increasingly popular in psychology (Heck et al., 2022).
- Relative likelihood of an alternative hypothesis (H_1) to a null hypothesis (H_0)

$$BF = \frac{p(\text{data} | H_1)}{p(\text{data} | H_0)}$$

- Compared to NHST, the BF has several advantages for hypothesis testing (e.g., Dienes & Mclatchie, 2018), **e.g.:**
- The support in data for the null H_0 evaluated.

The BF for mediation

• Little development. A recently proposed one (Liu et al., 2022):

 $BF^{med} = \frac{p(\text{data} \mid H_1^{med})}{p(\text{data} \mid H_0^{med})} =$

$$p(\text{data} \mid \alpha \neq 0, \beta \neq 0)$$

 $p(\text{data} \mid \alpha = 0, \beta \neq 0)p_{01\mid 0} + p(\text{data} \mid \alpha \neq 0, \beta = 0)p_{10\mid 0} + p(\text{data} \mid \alpha = 0, \beta = 0)p_{00\mid 0}$

• $p_{01|0}, p_{10|0}, p_{00|0}$ are the conditional prior probabilities of the three nomediation scenarios under the null of no mediation (H_0^{med}) ; specified based on prior knowledge (e.g., all equal 1/3: the three no-mediation scenarios are equally likely to occur based on prior knowledge)

For the **simple mediation model** where the paths α and β are independent:

$$BF^{med} = \frac{(1 + PriorOdds^{\beta} + PriorOdds^{\alpha})BF^{\alpha}BF^{\beta}}{(1)}$$

$$1 + \text{PriorOdds}^{\beta}\text{BF}^{\beta} + \text{PriorOdds}^{\alpha}\text{BF}^{\alpha}$$

- PriorOdds^{α}: Prior odds of the presence of path α
- PriorOdds^{β}: Prior odds of the presence of path β
- BF^{α}, BF^{β}: BFs for the regression coefficients representing the paths α and β ; can get from many packages, e.g., R package "BayesFactor" (Morey et al., 2018).

Xiao Liu¹ (xiao.liu@austin.utexas.edu), Zhiyong Zhang², and Lijuan Wang²

¹Department of Educational Psychology, The University of Texas at Austin ²Department of Psychology, University of Notre Dame

ition	effect
on an	

<u>Aims</u>

The BF approach provides an appealing complementary method for testing mediation. Particularly, with BF^{med}:

- The support in data for the specified no-mediation hypothesis H_0^{med} is evaluated.
- Prior probabilities of the three no-mediation scenarios can be considered.
- **But**: How well does BF^{med} perform for testing mediation, in terms of • <u>true positive rate</u> & <u>false positive rate</u>
- (i.e., power & Type I error rate in the frequentist language)? • Particularly: Impacts of the prior specification?

(e.g., can careful use of prior knowledge benefit the performance?) We focus on the <u>simple mediation model</u>.

Challenge: Method for calculation of the true- or false-positive rates, which are True positive rate = $Pr(BF^{med} > cutoff | H_1^{med})$

- False positive rate = $Pr(BF^{med} > cutoff | H_0^{med})$
- Need the distributions of BF^{med} over repeated samples under H_0^{med} and H_1^{med} .
- Need the cutoff.

Proposed Simulation-Based Method

Two types of priors can be distinguished when obtaining the distributions of a BF (Schönbrodt & Wagenmakers, 2018):

- Analysis prior: used to calculate BFs;
- Design prior: used to specify the population under a hypothesis (e.g., point mass at o under the null of no effect; a fixed effect size under an alternative) For the BF for testing mediation, we further have
- <u>Analysis prior odds</u> of each path (α or β) used to calculate the BF^{med} with Eq.(1)
- <u>Design prior odds</u> of each path (α or β) used to specify the population under no-mediation (H_0^{med}) ,
- i.e., used to determine the probability of the population being in each of the three no-mediation scenarios

Simulating the distribution of BF^{med} under H_0^{med}

Step.1: Specify the population under H_0^{med} , including population parameter values (α, β, τ') and the design prior odds.

Step.2: Simulate a sample of size *n* from the population under H_0^{med} Step.3: Calculate the the BF^{*med*} with Eq.(1) using the analysis prior

(e.g., default prior in "BayesFactor" package,

"default" prior odds: PriorOdds^{α} = PriorOdds^{β} = 1) Step.4: Repeat Steps 1-3 many (e.g., 10000) times.

Simulating the distribution of BF^{med} under H₁^{med} Step.1': Specify the population under H_1^{med} , including population parameter values (α, β, τ) , where α, β are non-zero.

Step.2': Simulate a sample of size *n* from the population under H_1^{med} Step.3': same as Step.3; Step.4': Repeat Steps 1'-3' many (e.g., 10000) times.

Cutoff of the BF for testing mediation: Two methods

- *Absolute cutoff*: 3 is a common cutoff used in previous studies on BFs of single relations (e.g., a regression coefficient; e.g., Jeon & De Boeck, 2017).
- <u>*Relative cutoff*</u> for 5% false positive ("Type I error") rate: 95% quantile of the distribution of BF^{*med*} under H_0^{med} .

True (false) positive rates of the BF for mediation

The BF with two different methods of specifying the analysis prior odds: (1) BF^{*med*} [design]: analysis prior odds = design prior odds; (2) BF^{*med*} [default]: analysis prior odds = the default prior odds (1 for both paths α and β , so $BF^{med} [default] = \frac{3BF^{\alpha}BF^{\beta}}{1 + BF^{\alpha} + BF^{\beta}}.$

Also, a frequentist mediation test (the joint-significance test) for comparison, for which: • the power (and Type I error rate) = the proportions of times that the absence of mediation was rejected with the samples generated under H_1^{med} (and under H_0^{med}).

									San	nple size: $n = 50$	
Design prior odds	BF cutoff: Relative				BF cutoff: 3				Joint-significance test		
	True positive rates		Cutoffs for 5% false positive rates		True positive rates		False positive rates		Power	Type I error rate	
	BF^{med}		BF^{med}		BF^{med}		BF^{med}				
$PriorOdds^{\alpha} = 1$	[design]	[default]	[design]	[default]	[design]	[default]	[design]	[default]			
$\operatorname{PriorOdds}^\beta$	True effect size: $\alpha = 0.59, \beta = 0.14$										
0.01	0.23	0.25	2.43	3.13	0.18	0.26	0.04	0.05	0.15	0.03	
0.33	0.26	0.26	2.43	2.97	0.21		0.04	0.05		0.02	
1	0.30	0.30	2.61	2.61	0.26		0.04	0.04		0.02	
3	0.41	0.39	3.09	2.07	0.42		0.05	0.03		0.02	
100	0.97	0.67	1.68	1.31	0.93		0.03	0.01		0.01	
	True effect size: $\alpha = 0.14, \beta = 0.59$										
0.01	0.96	0.54	1.51	1.16	0.92	0.20	0.02	0.00	0.16	0.01	
0.33	0.49	0.41	2.72	1.51	0.44		0.04	0.02		0.01	
1	0.31	0.31	2.01	2.01	0.20		0.03	0.03		0.02	
3	0.20	0.22	1.86	2.86	0.12		0.02	0.05		0.03	
100	0.17	0.17	1.41	3.71	0.09		0.02	0.07		0.05	

Key findings:

1. The prior odds specifications impacted the performance (true/false positive rates) of the BF for mediation, depending on the relative true effect sizes of α vs. β . • E.g., when path β had a relatively small true effect size (i.e., $\beta < \alpha$): the true positive

- rates of BF^{med} [design] was
- increased with specifying larger prior odds for path β ;

REFERENCES

Dienes, Z., & Mclatchie, N. (2018). Four reasons to prefer Bayesian analyses over significance testing. *Psychonomic Bulletin & Review*, 25(1), 207–218. Heck, D. W., Boehm, U., Böing-Messing, F., Bürkner, P.-C., Derks, K., Dienes, Z., . . . others (2022). A review of applications of the bayes factor in psychological research. *Psychological Methods*, 28(3), 558–579. Jeffreys, H. (1961). Theory of probability (3rd ed.). UK: Oxford University Press: Oxford. Liu, X., Zhang, Z., & Wang, L. (2023). Bayesian hypothesis testing of mediation: Methods and the impact of prior odds specifications. *Behavior Research Methods*, 55(3), 1108–1120. Morey, R. D., Rouder, J. N., & Jamil, T. (2018). BayesFactor: Computation of Bayes Factors for common designs. R package version 0.9. 12-4.2. Schönbrodt, F. D., & Wagenmakers, E.-J. (2018). Bayes factor design analysis: Planning for compelling evidence. Psychonomic Bulletin & Review, 25(1), 128–142

• higher than the true positive rate of BF^{med} [default] and the power of the jointsignificance test, with specifying a sufficiently large prior odds for path β . • Minor impact of the prior odds specification on the true positive rates, when the two paths had similar true effect sizes (i.e., $\beta = \alpha$; results not shown here).

2. The cutoff defining methods impacted the true positive rate of the BF for mediation.

Generally, for both BF^{med} [default] and [design],

- the relative cutoffs for 5% false positive rates <3; thus,
- higher true positive rates with the relative cutoffs, compared to with the cutoff 3.
- Consistent with previous research on the BFs for regression coefficients (e.g., Jeon & De Boeck, 2017; Rouder et al., 2009).

Jeon, M., & De Boeck, P. (2017). Decision qualities of bayes factor and p value-based hypothesis testing. *Psychological Methods*, 22(2), 340-360. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. *Psychonomic Bulletin & Review*, 16(2), 225–237.