SUMMING THE UP AND DOWNS OF LIFE: THE BAYESIAN RESERVOIR MODEL OF PSYCHOLOGICAL REGULATION

MIRINDA M. WHITAKER, Pascal R. Deboeck, & Cindy S. Bergeman

JULY 5, 2023

OUTLINE

1 Background

- Modeling dynamics & dynamical systems theory overview
- Dynamical systems theory in the social and behavioral sciences
- Potential directions in the study of dynamics
- 2 Introduce the Reservoir Model
- 3 Bayesian Reservoir Model: Simulation 1
- 4 Substantive application of the Bayesian Reservoir Model
- 5 Multi-level Bayesian Reservoir Model: Simulation 2
- 6 Conclusions & Future Directions

Dynamic systems: 1

- One or more components
- Frequent (often reversible) changes over short time periods (as opposed to growth processes²)
- Dynamical systems theory: mathematical modeling of dynamic systems ¹
- In psychology this often takes the form of difference/differential equation models 3
 - differential equation: $\frac{dx}{dt} = Ax + G\frac{dW}{dt}$
 - difference equations: $x_{t+dt} = (A + 1)x_t + \epsilon$

¹Smith & Thelen, 2003; Thelen & Smith, 2006 ²Nesselroade, 1991 ³Kaplan & Glass, 1997; Boker, 2012

Difference & differential equation applications in psychology

- Time series analysis ⁴
- Cross-lagged panel models ⁵
- Continuous time models ⁶
- Dynamic Structural Equation Modeling (DSEM) 7
- Damped linear oscillator model ⁸
- Cusp-catastrophe model 9
- Among other variations

⁴Box et al., 2015; Shumway, Stoffer, & Stoffer, 2000
⁵Hamaker, Kuiper, & Grasman, 2015; Newsom, 2015
⁶Deboeck & Preacher, 2016; Oud & Jansen, 2000; Voelkle et al., 2012; Voelkle & Oud, 2015
⁷Asparouhov, Hamaker, & Muthén, 2018
⁸Montpetit et al., 2010; Boker & Laurenceau, 2006; Nicholson et al., 2011
⁹Chow, Witkiewitz, Grasman, & Maisto, 2015; Oliva & McDade, 2008

Although there are several variations of these models

- The range of dynamics explored is relatively limited
- Especially given the wide range of processes studied in the social and behavioral sciences (i.e. perception, child development, suicide ideation, romantic partnerships, implicit bias, social support)
- The dynamical systems literature more broadly highlights the wide range of models needed to describe the rich variety of dynamic systems
 - Thus, a wider variety of models may be needed to match the wide range of processes studied in the social and behavioral sciences

- There is increasing acknowledgement that one-size-fits all approaches have substantial drawbacks ¹⁰
 - Accounting for individual differences and providing individualized estimates is becoming increasingly popular ¹¹
 - Yet, "individualizing" or tailoring models to the expected dynamics of particular processes is less common

 ¹⁰Molenaar, 2004; Nesselroade & Ram, 2004
 ¹¹Hoffman & Rovine, 2007; Nesselroade & Ram, 2004

RESERVOIR MODEL MOTIVATION

6

24

RESERVOIR MODEL PREVIOUS SEM IMPLEMENTATION

Figure: SEM model of the Reservoir Model. The variable dh/dt is regressed onto h, both of which are estimated using Latent Differential Equation Modeling. The distribution of errors ϵ makes use of Latent Distribution Modeling to produce a distribution of all-positive values. For each class c the mean of ϵ consists of a value greater or equal to zero; variations in the probability of the classes allow for different, all-positive distributions.

BAYESIAN RESERVOIR MODEL: SIMULATION 1 BAYESIAN IMPLEMENTATION

$$h_t = h_{t-1} - (\beta)(h_{t-1}) + \epsilon_t$$
 (1)

$$\mathbf{x}_t \sim \mathbf{N}(h_t, \sigma)$$
 (2)

Priors:

$$eta \sim Exp(\lambda_{eta,prior})$$
 *bounded from 0-2
 $M_{inputs} \sim Exp(\lambda_{MeanInputs,prior})$
 $1/\sigma^2 \sim Exp(\lambda_{Precision,prior}).$

Note: M_{inputs} = mean ϵ distribution

(3)

BAYESIAN RESERVOIR MODEL: SIMULATION 1 BAYESIAN IMPLEMENTATION

$$eta \sim Exp(\lambda_{eta, prior})$$
 *bounded from 0-2
 $M_{inputs} \sim Exp(\lambda_{MeanInputs, prior})$
 $1/\sigma^2 \sim Exp(\lambda_{Precision, prior}).$

•
$$\lambda_{\beta,\text{prior}}$$
: $(\beta \text{ value})^{-1}$ where $dh/dt + (\beta)(h) \ge 0$

- $\lambda_{MeanInputs,prior} = (\frac{1}{2} * M(value increase observations))^{-1}$
- 1/σ² was set to assume that 25% of the observed variance was measurement error

 $\beta = 0.6; \lambda_{\beta} = 1.66667$ 1.5 1.0 Density 0.5 0.0 00 0.5 1.0 1.5 20 hota M inputs = 4.6; $\lambda_{inputs} = 0.44$ 0.3 Density 0.2 0.1 0.0 10 15 20 inputs

BAYESIAN RESERVOIR MODEL: SIMULATION 1 Simulation conditions

- Simulation conditions were similar to Deboeck & Bergeman (2013)
 - Time series lengths: 25, 50, or 100
 - Input values were generated from an exponential distribution with rates ranging from .50 to 1.50 in increments of .25
 - Values for β ranged from .10 to .90 in increments of .10
 - Measurement error was set to 10%, 30%, or 50%
 - In total 500 time series were generated for each of the 405 conditions
- Bayesian Reservoir Model: previous equations (slide 9) were implemented to estimate all parameters using R and STAN
- Original SEM Model: previous equations (slide 7) were implemented using the SEM approach (slide 8) via R and OpenMx

BAYESIAN RESERVOIR MODEL: SIMULATION 1 Results for β parameter

BAYESIAN RESERVOIR MODEL: SIMULATION 1 Results for β parameter

SIMULATION 1: INPUT RESULTS RESULTS FOR M_{inputs} parameter

SIMULATION 1: INPUT RESULTS RESULTS FOR M_{inputs} parameter

SUBSTANTIVE APPLICATION OF THE BAYESIAN RESERVOIR MODEL

- Notre Dame Study of Health & Well-being ¹²: 775 adults (age 40-91)
 - Rated their perceived stress ¹³ daily for 56 days
 - Completed one time assessments of: Environmental Mastery ¹⁴, Self-esteem ¹⁵, Control of Internal States ¹⁶, Dispositional Resilience ¹⁷, Ego Resilience ¹⁸, Social Coping ¹⁹, and Social Support from Family and Friends ²⁰
 - A missing data adapted version of the Bayesian Reservior Model was applied

¹²Bergeman et al., 2021
¹³Cohen, 1988
¹⁴Ryff & Keyes, 1995
¹⁵Rosenberg, 2015
¹⁶Pallant, 2000
¹⁷Bartone, Ursano, Wright, & Ingraham, 1989
¹⁸Block & Kremen, 1996
¹⁹Carver, Scheier, & Weintraub, 1989
²⁰Procidano & Heller, 1983

Table: Correlations between Reservoir Model Estimates and Reserve Capacity Resources

Resources	Stress Dissipation	Stress Input
Age	0.02	-0.16***
Environmental Mastery	0.32***	-0.12**
Self Esteem	0.30***	-0.07
Control of Internal States	O.25***	-0.13**
Dispositional Resilience	0.30***	-0.02
Ego resilience	O.24 ^{***}	-0.01
Social Coping	O.24 ^{***}	0.08
Support from Family	0.27***	0.04
Support from Friends	O.24 ^{***}	0.00
Note: * p<.01: ** p<.001: *** p<.0001		

MULTI-LEVEL BAYESIAN RESERVOIR MODEL: SIMULATION 2 IMPLEMENTATION

$$\begin{aligned} h_{i,t} &= h_{i,t-1} - \beta_i h_{i,t-1} + \epsilon_{i,t} \\ \beta_i &\sim & \mathsf{Exp}(\lambda_\beta) \\ \epsilon_{i,t} &\sim & \mathsf{Exp}(\lambda_{\epsilon,i}) \\ \lambda_{\epsilon,i} &\sim & \mathsf{Exp}(\lambda_{\epsilon}). \end{aligned}$$
 (4)

Priors:

$$egin{array}{rcl} \lambda_eta &\sim & \textit{Exp}(\lambda_{eta,\textit{prior}}) \ \lambda_\epsilon &\sim & \textit{Exp}(\lambda_{\epsilon,\textit{prior}}) \ 1/\sigma^2 &\sim & \textit{Exp}(\lambda_{\textit{Precision},\textit{prior}}). \end{array}$$

(5)

MULTI-LEVEL BAYESIAN RESERVOIR MODEL SIMULATION CONDITIONS

- Evaluate model under varying multi-level data conditions
 - Time series lengths: 15, 30, 50 or 100
 - Number of participants (N): 15, 30, 50 or 100
 - \blacktriangleright β values were drawn from a gamma distribution and ranged from 0 to 2
 - Input values were drawn from a gamma distribution (2, 5)
 - Measurement error was set to 15%
- The equations on the previous slide (slide 16) were implemented to estimate all parameters using R and STAN

MULTI-LEVEL BAYESIAN RESERVOIR MODEL: SIMULATION 2 Results for β parameter

MULTI-LEVEL BAYESIAN RESERVOIR MODEL: SIMULATION 2 RESULTS FOR M_{induts} parameter

- The current adaptation of the Reservoir Model demonstrates the benefits of leveraging the combined strengths of Bayesian estimation and multi-level modeling to create a model tailored to self-regulatory processes (e.g., stress regulation)
 - Allows for the modeling of unique dynamics
 - Accommodates short time series and smaller samples
 - Aids applied researchers by broadening the models available to study dynamic processes like stress
 - Going beyond trait-level conceptualizations of adaptational processes like stress regulation and resilience
- Here we present a specific formulation of this model
 - Future work could expand or modify this model to reflect our conceptual and theoretical understanding of a variety of processes

23

DISCUSSION CONCLUSIONS & FUTURE DIRECTIONS

For example...

THANK YOU FOR YOUR TIME AND ATTENTION!

QUESTIONS, COMMENTS, & FEEDBACK ARE WELCOME!

MIRINDA.WHITAKER@UTAH.EDU @WHITAKERMIRINDA MODEL CODE IS AVAILABLE AT: OSF.IO/6QH37/

GRAPHICS CREATED USING R AND BIORENDER.COM

DATA CENSORING

$$p(\mathbf{x}_t|h_t) = \prod_{t:\mathbf{x}_t > \mathbf{o}} N(\mathbf{x}_t|h_t, \sigma) \prod_{t:\mathbf{x}_t = \mathbf{o}} \Phi\left(\frac{h_t - \mathbf{o}}{\sigma}\right)$$

MISSING DATA SIMULATION: β

MISSING DATA SIMULATION: Minputs

MULTI-LEVEL BAYESIAN RESERVOIR MODEL: SIMULATION 2 Results for β parameter

MULTI-LEVEL BAYESIAN RESERVOIR MODEL: SIMULATION 2 RESULTS FOR M_{induts} parameter

