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Background
modeling dynamics & dynamical systems theory

Dynamic systems: 1

▶ One or more components
▶ Frequent (often reversible) changes over short time periods (as opposed to

growth processes2)
▶ Dynamical systems theory: mathematical modeling of dynamic systems 1

▶ In psychology this often takes the form of difference/differential equation models
3

differential equation: dx
dt = Ax + G dW

dt

difference equations: xt+dt = (A+ 1)xt + ϵ

1Smith & Thelen, 2003; Thelen & Smith, 2006
2Nesselroade, 1991
3Kaplan & Glass, 1997; Boker, 2012
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Background
dynamical systems theory in the social & behavioral sciences

Difference & differential equation applications in psychology
▶ Time series analysis 4

▶ Cross-lagged panel models 5

▶ Continuous time models 6

▶ Dynamic Structural Equation Modeling (DSEM) 7

▶ Damped linear oscillator model 8

▶ Cusp-catastrophe model 9

▶ Among other variations
4Box et al., 2015; Shumway, Stoffer, & Stoffer, 2000
5Hamaker, Kuiper, & Grasman, 2015; Newsom, 2015
6Deboeck & Preacher, 2016; Oud & Jansen, 2000; Voelkle et al., 2012; Voelkle & Oud, 2015
7Asparouhov, Hamaker, & Muthén, 2018
8Montpetit et al., 2010; Boker & Laurenceau, 2006; Nicholson et al., 2011
9Chow, Witkiewitz, Grasman, & Maisto, 2015; Oliva & McDade, 2008
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Background
Potential directions in the study of dynamics

Although there are several variations of these models
▶ The range of dynamics explored is relatively limited
▶ Especially given the wide range of processes studied in the social and behavioral

sciences (i.e. perception, child development, suicide ideation, romantic
partnerships, implicit bias, social support)

The dynamical systems literature more broadly highlights the wide range of
models needed to describe the rich variety of dynamic systems
▶ Thus, a wider variety of models may be needed to match the wide range of

processes studied in the social and behavioral sciences
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Background
Potential directions in the study of dynamics

There is increasing acknowledgement that one-size-fits all approaches have
substantial drawbacks 10

▶ Accounting for individual differences and providing individualized estimates is
becoming increasingly popular 11

▶ Yet, "individualizing" or tailoring models to the expected dynamics of particular
processes is less common

10Molenaar, 2004; Nesselroade & Ram, 2004
11Hoffman & Rovine, 2007; Nesselroade & Ram, 2004
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Reservoir Model
Motivation
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Reservoir Model
conceptual overview & equations
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with stress

1). dhdt = −βh+ ϵ

10Deboeck & Bergeman, 2013
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Reservoir Model
conceptual overview & equations

Height
(h)

Input 
 (ε) 

Dissipation 
(β)

ht = ht−1 − (β)(ht−1) + ϵt
10Deboeck & Bergeman, 2013
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Reservoir Model
previous SEM implementation
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Figure: SEM model of the Reservoir Model. The variable dh/dt is regressed onto h, both of which are estimated
using Latent Differential Equation Modeling. The distribution of errors ϵ makes use of Latent Distribution Modeling
to produce a distribution of all-positive values. For each class c the mean of ϵ consists of a value greater or equal
to zero; variations in the probability of the classes allow for different, all-positive distributions.
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Bayesian Reservoir Model: Simulation 1
Bayesian Implementation

ht = ht−1 − (β)(ht−1) + ϵt (1)
xt ∼ N(ht, σ) (2)

Priors:

β ∼ Exp(λβ,prior) *bounded from 0-2 (3)
Minputs ∼ Exp(λMeanInputs,prior)

1/σ2 ∼ Exp(λPrecision,prior).

Note: Minputs = mean ϵ distribution
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Bayesian Reservoir Model: Simulation 1
Bayesian Implementation

β ∼ Exp(λβ,prior) *bounded from 0-2
Minputs ∼ Exp(λMeanInputs,prior)

1/σ2 ∼ Exp(λPrecision,prior).

λβ,prior: (β value)−1 where
dh/dt+ (β)(h) ≥ 0

λMeanInputs,prior = ( 1
2 ∗

M(value increase observations))−1

1/σ2 was set to assume that 25% of
the observed variance was
measurement error

β = 0.6; λβ = 1.66667
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Bayesian Reservoir Model: Simulation 1
Simulation conditions

Simulation conditions were similar to Deboeck & Bergeman (2013)
▶ Time series lengths: 25, 50, or 100
▶ Input values were generated from an exponential distribution with rates ranging

from .50 to 1.50 in increments of .25
▶ Values for β ranged from .10 to .90 in increments of .10
▶ Measurement error was set to 10%, 30%, or 50%
▶ In total 500 time series were generated for each of the 405 conditions

Bayesian Reservoir Model: previous equations (slide 9) were implemented to
estimate all parameters using R and STAN

Original SEM Model: previous equations (slide 7) were implemented using the
SEM approach (slide 8) via R and OpenMx
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Bayesian Reservoir Model: Simulation 1
Results for β parameter

ESEM = 0.135
EBayes = 0.012

RE=0.092
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Note: Efficiency = Σ(Estimatesk−Truek)2
N for k time series; EBayes = Bayes Efficiency, ESEM = SEM Efficiency, RE= Relative Efficiency (

EBayes
ESEM

)
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Bayesian Reservoir Model: Simulation 1
Results for β parameter
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Simulation 1: input results
Results for Minputs parameter

Note: Efficiency = Σ(Estimatesk−Truek)2
N for k time series; EBayes = Bayes Efficiency, ESEM = SEM Efficiency, RE= Relative Efficiency (

EBayes
ESEM

)

15 24



Simulation 1: input results
Results for Minputs parameter
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Substantive application of the Bayesian Reservoir Model
method

Notre Dame Study of Health & Well-being 12: 775 adults (age 40-91)
▶ Rated their perceived stress 13 daily for 56 days
▶ Completed one time assessments of: Environmental Mastery 14, Self-esteem 15,

Control of Internal States 16, Dispositional Resilience 17, Ego Resilience 18, Social
Coping 19, and Social Support from Family and Friends 20

▶ A missing data adapted version of the Bayesian Reservior Model was applied
12Bergeman et al., 2021
13Cohen, 1988
14Ryff & Keyes, 1995
15Rosenberg, 2015
16Pallant, 2000
17Bartone, Ursano, Wright, & Ingraham, 1989
18Block & Kremen, 1996
19Carver, Scheier, & Weintraub, 1989
20Procidano & Heller, 1983
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Substantive application of the Bayesian Reservoir Model
results

Table: Correlations between Reservoir Model Estimates and Reserve Capacity Resources

Resources Stress Dissipation Stress Input
Age 0.02 -0.16***
Environmental Mastery 0.32*** -0.12**
Self Esteem 0.30*** -0.07
Control of Internal States 0.25*** -0.13**
Dispositional Resilience 0.30*** -0.02
Ego resilience 0.24*** -0.01
Social Coping 0.24*** 0.08
Support from Family 0.27*** 0.04
Support from Friends 0.24*** 0.00

Note: * p<.01; ** p<.001; *** p<.0001
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Multi-level Bayesian Reservoir Model: Simulation 2
implementation

hi,t = hi,t−1 − βihi,t−1 + ϵi,t (4)
βi ∼ Exp(λβ)

ϵi,t ∼ Exp(λϵ,i)

λϵ,i ∼ Exp(λϵ).

Priors:

λβ ∼ Exp(λβ,prior) (5)
λϵ ∼ Exp(λϵ,prior)

1/σ2 ∼ Exp(λPrecision,prior).
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Multi-level Bayesian Reservoir Model
simulation conditions

Evaluate model under varying multi-level data conditions
▶ Time series lengths: 15, 30, 50 or 100
▶ Number of participants (N): 15, 30, 50 or 100
▶ β values were drawn from a gamma distribution and ranged from 0 to 2
▶ Input values were drawn from a gamma distribution (2, 5)
▶ Measurement error was set to 15%

The equations on the previous slide (slide 16) were implemented to estimate
all parameters using R and STAN
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Multi-level Bayesian Reservoir Model: Simulation 2
results for β parameter

Note: Efficiency = Σ(Estimatesk−Truek)2
N for k time series; EML =multi-level efficiency, ESL =single-level efficiency, RE= Relative Efficiency ( EML

ESL
)
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Multi-level Bayesian Reservoir Model: Simulation 2
results for Minputs parameter

Note: Efficiency = Σ(Estimatesk−Truek)2
N for k time series; EML =multi-level efficiency, ESL =single-level efficiency, RE= Relative Efficiency ( EML

ESL
)
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Discussion
Conclusions & Future Directions

The current adaptation of the Reservoir Model demonstrates the benefits of
leveraging the combined strengths of Bayesian estimation and multi-level
modeling to create a model tailored to self-regulatory processes (e.g., stress
regulation)
▶ Allows for the modeling of unique dynamics
▶ Accommodates short time series and smaller samples
▶ Aids applied researchers by broadening the models available to study dynamic

processes like stress
Going beyond trait-level conceptualizations of adaptational processes like stress
regulation and resilience

Here we present a specific formulation of this model
▶ Future work could expand or modify this model to reflect our conceptual and

theoretical understanding of a variety of processes
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Discussion
Conclusions & Future Directions

For example...
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Thank you for your time and
attention!

Questions, Comments, & Feedback are welcome!

# mirinda.whitaker@utah.edu
�@whitakermirinda

model code is available at: osf.io/6qh37/
Graphics created using R and BioRender.com



Data Censoring

p(xt|ht) =
∏
t:xt>0

N(xt|ht, σ)
∏
t:xt=0

Φ

(
ht − 0

σ

)



Missing Data Simulation: β
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Missing Data Simulation: Minputs
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Multi-level Bayesian Reservoir Model: Simulation 2
results for β parameter

Note: Efficiency = Σ(Estimatesk−Truek)2
N for k time series; EML =multi-level efficiency, ESL =single-level efficiency, RE= Relative Efficiency ( EML

ESL
)



Multi-level Bayesian Reservoir Model: Simulation 2
results for Minputs parameter
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