Robust and Pseudo-Robust Solutions to Lord's Paradox

Robert E. Larzelere & Hua Lin Oklahoma State Univ.

Four Pseudo-Robust Solutions to Lord's Paradox

#1: Adding pretest Y₀ to diffs-in-diffs model
 #2: Matching on pretest
 #3: Centering all data on pretest group means

#4: Increasing variance of d.v.

Robustness (Duncan +, 2014)

Developmental science: 5-25% articles

- Like econometrics: 66-68% of articles
 - Some check of replication or robustness

> Robustness

- Across samples & sub-samples
- Across alternative analyses
 - Esp. if contradictory biases
- > Best solution to Lord's Paradox?
 - Not definitive

Pseudo-Robustness #1

- Diffs-in-diffs controlling for pretest
 - Best of both?
 - Tx effect identical to ANCOVA

Pseudo-Robustness #1

 $> Y_2 - Y_1 = \gamma_0 + \gamma_1 X_1 + e$ (diffs-in-diffs) > $Y_2 = b_0 + b_1 X_1 + b_2 Y_1 + e$ (ANCOVA) > $Y_2 - Y_1 = \gamma_0 + \gamma_1 X_1 + \gamma_2 Y_1 + e$ (combined) $> Y_2 = \gamma_0 + \gamma_1 X_1 + (1 + \gamma_2) Y_1 + e$ • Adding pretest makes $\gamma_1 = b_1$ • $b2 = 1 + \gamma 2$ > 2nd and 3rd equations above: equivalent by math

 Basis for other Pseudo-Robustness: Lin (2018)
 Lord's paradox: ANCOVA vs. differencein-differences

- Simulated
- for corrective actions with a "known" result (Tx's for depression)

Two Adjustment Methods

Difference scores: differences in differences / Change

	Pretest	Posttest	Change
Treatment	9	5	4
control	2.5	2	0.5

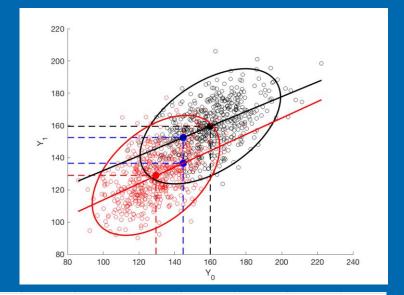
Residualized score: ANCOVA/linear regression

$$y_{ij1} = a + bx_j + cy_{ij0} + e_{ij}$$

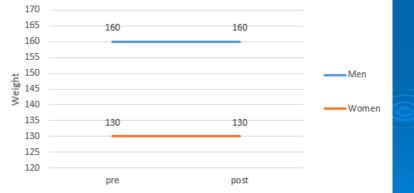
<u>eS</u>-

Lord's Paradox Simulated

Lord's paradox Simulates the null hypothesis H₀ for difference score


	Pretest M	Posttest M	Chang e
Female	130	130	0
Male	160	160	0

r(pre, post) = .48 *SD* = 15

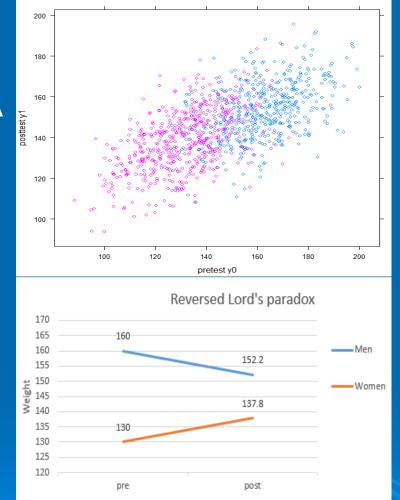

Results:

Difference scores: d = .02 (n.s.) Residualized scores: $b = -15.60^{***}$

***p < 0.001

"Reversed" Paradox Simulated

Reversed Lord's paradox


Simulates the null hypothesis H₀ for ANCOVA

	Pretes t	Posttes t	Change
Women	130	137.8	- 7.8
Men	160	152.2	7.8

Mean pretest:
$$Y_0 = 145$$

Mean posttest: $\overline{Y}_1 = 145$
 $Y_{ij1} = a + b * girl_j + cY_{ij0} + e$
 $b = 0$
 $c = 0.48$
 $a = \overline{Y}_1 - b \times \overline{Y}_0 = 75.4$
 $SD(e) = 13.159$

Results:

Difference scores: $d = 15.61^{***}$ Residualized scores: b = 0.02 (n.s.)

Robust change-score estimates

Given equal variances across groups & times, etc.:

 $d_1 - b_1 = (b_2 - 1)(M_{y20} - M_{y10})$

Thus, equating pretest group means makes the two change-score estimates equal (robust)

Equating pretest group means:

Matching

Centering all data on pretest group means

Pseudo-Robustness #2: Matching: Simulations

Simulation Study Differences-in-Diffs Residualized Change

Results from ANCOVA and Analyses of Simple Changes Scores for Two Simulated Datasets

	Pretest Difference		Simple Change Score		Residual Change Score	
Data	d_0	t(d ₀)	d_I	$t(d_I)$	b_1	$t(b_1)$
Simulation of Lord's paradox	x data (to fit	the null hype	othesis for sir	nple change sc	ores)	
Original data	-29.99***	-31.68	-0.02	-0.002	-15.60***	15.50
Matched on pretest (1:1)	-0.09	-0.08	-15.53***	-9.74	-15.58***	-10.55
Simulation of reversed Lord'	s paradox (t	o fit the null	hypothesis fc	or ANCOVA)		-
Original data			15.61***	16.17	0.02	0.02
Matched on pretest (1:1)	-0.09	-0.08	0.11	0.07	0.06	0.04
		stent, but ased			sistent & biased?	

Pseudo-Robustness #2: Matching Pretests: Tx's for Depression

The FFCW data

Results from ANCOVA and Analyses of Simple Changes Scores for Treatments for Depression in Mothers of

Differences-in-Diffs Residualized Change the Fragile Families Data Set Pretest Difference Simple Change Score Residual Change Score Data do $t(d_0)$ di $t(d_I)$ b_1 $t(b_1)$ Psychological Treatment Original scale 5.80*** 19.44 -2.13***-5.761.43***6.12 Matched on pretest (1:1) 0 1.44** 2.97 1.44 * * *3.510 Medication Treatment Original scale 5.53*** 16.41 -1.89***5.78-4.741.48***Matched on pretest (1:1) 1.47**2.771.47***3.28 0 0 Consistent, biased?

Pseudo-Robustness #2: Matching: Kang (2022)
Many steps to improve causal validity
Drop overly frequent spanking
Entropy balancing

Equated pretest means exactly

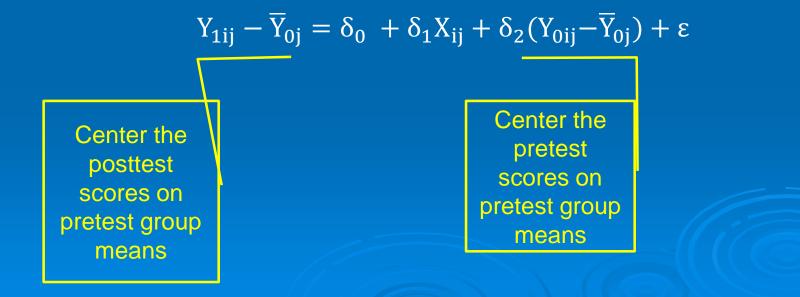
	Effect of PP in Past Week			
	AR-1	AR-1 Diff-scores		
Externalizing	.081***	.081***		
Self-control	059***	059**		
Relational skills	059***	059**		

Pseudo-Robustness #2: Propensity-Score Matching
Lin (2018) used Haviland et al. (2007) plan
Mixture modeling (3 depression trajectories)
Propensity-score matching within trajectories

	Effect on T5 Depression		
	Residualized	Diff scores	
Meds at T4			
Pretest matching	1.49**	1.38*	
Propensity matching	1.24*	1.12	
Therapy at T4			
Pretest matching	1.43**	1.18*	
Propensity matching	1.24*	1.02*	

Do Propensity Scores Work for Corrective Actions?

> Home-visitations to reduce child abuse


- > 3 studies found adverse effects with propensity- or entropy-score methods
 - Matone et al. (2012) injuries
 - Matone et al. (2018) severe injuries
 - Home visiting, Early Head Start, Parents as Teachers
 - Holland et al. (2022) investigated CPS reports

o children removed from home, using diffs-in-diffs

Are Propensity Scores Insuffient for Corrective Actions? Still biased like ANCOVA • Steiner et al. (2010) Due to fallible covariates > Has ANCOVA bias harmed parenting advice to at-risk parents? Original Olds+ study: NFP'ers advised parents how to punish their preschoolers Now: Positive parenting recommended

Pseudo-Robustness #3: Dual-Centered Data

- Dual-Centered ANCOVA
- Extension of Huitema's Quasi-ANCOVA

Results Using Dual-Centered Data

	Difference	Difference Scores		Change Score
Data	dı	$t(d_l)$	b_1	<u>t(</u> b ₁)
Lord's example	-0.01	-0.01	-0.01	-0.01
Reversed	15.61***	16.17	15.61***	18.76
Sex costs talk	-0.08**	-2.77	-0.08***	-3.43
Reasoning	-0.03*	-2.35	-0.03*	-2.73
Hospitalization	0.16***	3.81	0.17***	4.91

More Power? OR Inflated α

Treatment Outcome Sex costs talk \rightarrow Unprotected sex Reasoning \rightarrow Child aggression Hospitalization \rightarrow Physical health

Pseudo-Robustness #4: Increasing Variance over Time Given equal variances across groups & times, etc.:

 $d_1 - b_1 = (b_2 - 1)(M_{y20} - M_{y10})$ Thus, the two change-score Tx estimates are equal (robust) when $b_2 = 1$ Unrealistic limit when σ^2 s of outcome are unchanged over time Possible with increasing σ^2 s over time

Pseudo-Robustness #4: $b_2=1$

Example from Ding & Li (2019)

- Article: 2 change-score analyses as brackets on true causal effect
- Example #2: Beneficial policy & electoral voting: flood disaster relief in Germany
 - b₂ = .997, Tx effects: 7.12 (ANCOVA) & 7.14 (diffs-in-diffs)

Pseudo-Robustness #4: $b_2=1$

> Larzelere, Knowles et al. (2018) • Effects of 7 tactics by type of noncompliance Robust results across change-score analyses > $b_2 = 1$ when standardized $\beta_2 = SD_{Y0}/SD_{Y1}$ • Externalizing: $r_2 = .79$ vs. 7.39/8.00 = .92 • Internalizing: $r_2 = .69$ vs. 5.95/6.52 = .91• Total problems: $r_2 = .75$ vs. 16.87/17.69 = .94> Increasing σ^2 of d.v. partially accounts for robustness

Acknowledgements

Funding from

- NICHD grant #5 R03 HD107307
- OK State U. Parenting Professorship