

Daily Associations of Emotion and Fatigue in College Students during the Early Stages of the COVID-19 Pandemic: An Application of Dynamic Structural Equation Modeling

Parisa Rafiee, Elizabeth Pauley, Melissa Rothstein, Amy L. Stamates & Manshu Yang

M3 Conference June 2023

Purpose of Study

- Assess the reciprocal (i.e., bidirectional) relationship between:
 - Feelings of fatigue
 - Affect (negative and positive)
- Do these associations vary across individuals?

Background

- Fatigue (Smets et al., 1995): harmless occurrence due to
 - o insufficient sleep
 - o lack of relaxation
 - o increased physical activity
 - o everyday life stress
- Mental fatigue may **diminish** ability to **regulate emotions** (Grillon et al., 2015).

Background

- Emotion Regulation (ER) (Gross & John, 2003): A process helping individuals determine
 - how long emotions last
 - o how intense emotions are felt and conveyed
- ER can up- or down-regulate (Koole, 2009; Lewczuk et al., 2022).
 - o negative affect (i.e., undesirable feelings)
 - o positive affect (i.e., desirable feelings)
- **ER** takes effort and may **lead to fatigue** (Van Dellen et al., 2012; Lewczuk et al., 2022).

Measures Used in This Study

- Negative Affect
- o Nervousness
- o Anxiety
- o Sadness
- Dejection
- o Anger
- o Hostility

• Positive Affect

- Happiness
- o Cheerfulness
- o Content
- o Enthusiasm

- Fatigue
- o Spent
- o Depleted
- o Drained

Data Collection

- Responses recorded on a 5-point *Likert scale*
- Scores averaged to yield *composite scores*:
 - Negative affect
 - Positive affect
 - Fatigue

Parent Study

- An IRB approved study examining
 - alcohol use, drinking motives, coping mechanisms, and daily stressors, among college students
 - during early stages of the COVID-19 pandemic
- Data Collection
 - o Micro-longitudinal design
 - Data collected electronically *daily for 21 days* (May/June of 2020)

Participant Sample in This Study

- o 54 undergraduate and graduate students
- From University of Rhode Island
- Predominantly *female* (86%)
- Predominantly *white* (85%)
- **18-40** years old (M = 29.19, SD = 4.46)

Method

- **Dynamic Structural Equation Modeling (DSEM):** the temporal relationships of fatigue and positive/negative affect (21-day period).
- **DSEM** (Hamaker et al., 2021, Zhou et al., 2021):
 - State-of-the-art statistical method
 - Combines **time-series analysis** with **multilevel SEM**
 - Allows **time-lagged associations** between multiple variables
 - Investigates individual differences in these associations

Method: DSEM

• Assumes data are **missing at random**

- use all the available data without removing cases
- reduce estimation bias and increase statistical power, as compared to traditional ad hoc methods (e.g., listwise deletion, mean substitution)
- In the current study, DSEM:
 - assesses the **bidirectional associations** between fatigue and affect at a **daily level**
 - considers how associations vary from **person-to-person**

Model Specification

Within

Between

Analysis

- Mplus version 8.0 was used for the analysis, with:
 - Latent mean centering
 - \circ Estimator = Bayes
 - \circ Algorithm = Gibbs
 - o 50,000 iterations

Model 1: The reciprocal relationship of negative affect and fatigue

OF RHODE ISLAND

Model 2: The reciprocal relationship of positive affect and fatigue

OF RHODE ISLAND

Discussion

- Unidirectional association between fatigue and negative affect
- No association between fatigue and positive affect
- Negative affect predicted following-day fatigue:
 - higher negative affect during COVID-19
 - extra effort to down-regulate
 - o elevated fatigue on the following day
- Positive affect did not predict following-day fatigue:
 - Down-regulating negative affect may take more efforts than up-regulating positive affect

Limitations

- Small sample size
 - Limited power for between-person associations
- Limited diversity of sample:
 - Predominantly white
 - Predominantly female
 - Mostly young adults
- Only **one assessment** per day:
 - Might not capture transient emotion regulation and fatigue within a day.

Future Directions

- Explore if momentary relationships between affect and fatigue **remains**:
 - with **more frequent** assessments within a day
 - using a **larger** and **more diverse** sample
 - **beyond the pandemic** time period

References

Asparouhov, T., Hamaker, E. L., & Muthén, B. (2017). Dynamic latent class analysis. *Structural Equation Modeling: A Multidisciplinary Journal*, 24(2), 257–269.

Asparouhov, T., Hamaker, E.L. & Muthén, B. (2018). Dynamic Structural Equation Models. *Structural Equation Modeling: A Multidisciplinary Journal*, 25(3), 359-388, DOI: 10.1080/10705511.2017.1406803

Cropanzano, R., Weiss, H. M., Hale, J. M., & Reb, J. (2003). The structure of affect: Reconsidering the relationship between negative and positive affectivity. *Journal of management*, 29(6), 831-857.

Grillon, C., Quispe-Escudero, D., Mathur, A., & Ernst, M. (2015). Mental fatigue impairs emotion regulation. *Emotion*, 15(3), 383.

Gross, J.J., John, O.P., 2003. Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. *J. Pers. Soc. Psychol.* 85, 348–362.

Hamaker, E. L., Asparouhov, T., & Muthén, B. (2021). Dynamic structural equation modeling as a combination of time series modeling, multilevel modeling, and structural equation modeling. *The handbook of structural equation modeling*.

References

Koole, S. L. (2009). The psychology of emotion regulation: An integrative review. *Cognition and emotion*, 23(1), 4-41.

Lewczuk, K., Wizła, M., Oleksy, T., & Wyczesany, M. (2022). Emotion Regulation, Effort and Fatigue: Complex Issues Worth Investigating. *Frontiers in Psychology*, 13.

Smets, E.M., Garssen, B., Bonke, B., De Haes, J.C., 1995. The multidimensional fatigue inventory (MFI) psychometric qualities of an instrument to assess fatigue. *J. Psychosom. Res.* 39, 315–325.

van Dellen, M., Hoyle, R., and Miller, R. (2012). The regulatory easy street: self-regulation below the selfcontrol threshold does not consume regulatory resources. *Personality and individual differences*, 52(8), 898-902.

Zhou, L., Wang, M., & Zhang, Z. (2021). Intensive longitudinal data analyses with dynamic structural equation modeling. *Organizational Research Methods*, 24(2), 219–250.

Acknowledgement

Special thanks to Dr. Amy Stamates and Dr. Manshu Yang for providing us

with the data and helping us throughout the project.

Thank You! Any Questions?

For further information, please contact:

Parisa Rafiee Email: <u>prsrafiee@uri.edu</u>

