Reconsidering Lord's Paradox: Implications for Valid Longitudinal Causal Inferences

> Hua Lin & Robert E. Larzelere Oklahoma State Univ.

Symposium Outline

 Intro: need to understand implications of Lord's Paradox for causal inference
 ANCOVA vs. Diffs-in-Diffs

Pseudo-robustness across 2 changescore models

 Does group-mean centering bias Tx se's?
 A test of Tx X Pretest interactions in diffsin-diffs model

Outline to Intro to Symposium

- Foundational: Valid causal inferences of change
- Lord's paradox: unresolved after 56 years
- Pros and cons
 - ANCOVA-type residualized change
 - Difference-score analyses

Implications: analyzing corrective actions

Basic Human Devel. Questions

But how should we analyze change?
 for valid causal explanations

- Necessary for optimal applications
- Difficult without randomization or equivalent

How to Analyze Change?

ANCOVA-type residualized change

 Predict Y₂ controlling for Y₁: Y₂ | Y₁

 Difference-score analyses

 Predict Y₂ - Y₁

 Lord's (1967) Paradox:

 2 change-score analyses often contradictory

Lord's Paradox

Which is more causally valid?

Residualized change Cronbach & Furby (1970), Pearl (2016) > Simple change Allison (1990), Castro-Schilo & Grimm (2018) > Both • Robustness: Duncan et al. (2014) Bracketing: Angrist & Pischke (2009), Ding & Li (2019)

Which is more causally valid?

> Depends on assumptions: Holland & Rubin (1983), Wainer (1991) > Assumptions (under null H₀) • Simple change: parallel slopes Differential slopes undermine causal validity e. g., regression toward the mean Residualized change: ignorability (like RCT) Coviariates independent of Tx | stat model

Between-person diffs undermine causal validity

Difference-score's Null H₀

Null Hypothesis for Difference-Score Analysis

ANCOVA's Null H₀

Null Hypothesis for ANCOVA

Why Residualized Change?

 > Greater statistical power
 > Unbiased causal estimate IFF all confounders controlled for perfectly
 > Doesn't require Time-1 measure of d.v.
 • Propensity-score matching

Points Against Residualized Change

> Assumes covariates indpt of Tx

> Biased by between-person differences

- Unadjustment bias Campbell & Boruch ('75)
- Hamaker et al. (2015)
- Berry & Willoughby (2017)
- Hoffman (2015)

Assumes regression toward a grand mean
 Two equivalent distributions

Why Simple Change?

Pure within-person changes

 Not confounded with between-person diffs

 Overcomes underadjustment bias?
 Unbiased IFF parallel slopes assumption is correct

Points Against Simple Change

- Need equivalent measures @ Time 1 & 2
- > Assumes interval scale without ceiling or floor
- Low reliability
- Difference score –r with pretest score
- Cannot test Treatment X Pretest

Which is More Causally Valid?

Kenny's (2011) underappreciated work

- "Change that we cannot believe in"
- Kenny (1975): Contrast of two change-score analyses in NECG design
- "It depends"
 - On trait vs. state components of pretest
- Issue: fallibility of measures

My Interest in This Issue

What alternative tactics > physical punish?
 45-year research program
 Two questions:
 Are adverse *r's* of PP causal or spurious?
 What other tactics are more effective?

Esp. for difficult disciplinary situations

4 Corrective Actions by Type of Statistical Evidence (Externalizing)

Evidence Type	Physical Punishment	Nonphysical Punishment	Therapy for Child	Ritalin
Cross- sectional <i>r</i>	.20***	.20**	.12**	.11**
Longitudinal r	.16***	.18**	.13**	.13**
β (Y2 Y1)	.07***	.08^	.14^	.06
<i>r</i> with Y2 – Y1	04*	02^	.01	.02
RCT	35*	64**	18**	

Corrective Actions

- Def: An action selected to correct a perceived problem
 - Subsequent symptoms due to:
 - Poor prognosis of problem
 - Effect of action to modify that prognosis
- > ANCOVA biased against corrective actions
 - Make them look less effective than they are

Intervention Selection Bias

Larzelere et al. (2004). The intervention selection bias. Psychol. Bull.

Intervention Selection Bias

Intervention Selection Bias

Counterfactuals for Non-Physical Punish: 3 Analyses

ANCOVA Biased Against Most Corrective Actions

By parents

- All disciplinary responses to misbehavior
- Helping with homework
- Talks against deviant behaviors and peers

> By professionals

- Therapy for kids and women
- Medical Tx's for kids and women
- Out-of-home placements
- Job training programs

Effects of Biases in Parenting Research?

- Evidence against denigrated corrective actions: Easy
 - spanking, harsh parenting

> Evidence for good corrective actions: Hard

 APA & AAP: No cited evidence for tactics to replace spanking

Weakens 1st step of translational research

Effectiveness of child Tx's stagnant or down

e. g., Tx for conduct probs: d = .76 in 1963; d = .36 in 2017: MA by Weisz et al. (2019)

Lessons from Econometrics

Robustness (Duncan et al., 2014)

 Across analyses w contrasting biases

 More humility about causal evidence
 Generated regressors

Acknowledgement

Consultants

- Dave Kenny
- Joshua Habiger & Tianyu Cao
- B. Wade Brorsen

Funding

- NICHD grant #5 R03 HD107307
- OK State Univ. Parenting Professorship

Extra, Unused Slides

Null H₀: Difference-Scores: Lin (2018) Means: 130 & 160; SD = 15 Null H₀: No-Tx effect re simple gain scores

Null H₀: ANCOVA: Lin (2018) > Ms: 130, 160, post: 137.8, 152.2; SD = 15 > Null H₀: No-Tx effect re ANCOVA

Lord's Paradox: Examples

	Treatment (Time 1)	Outcome (Time 1 & 2)	Sample Size	Data Set
Example 1	Parent-youth discussions about sexual risks	Subsequent unprotected sexual behaviors	<i>N</i> = 4753	Adolescent to Adult Health
Example 2	Disciplinary reasoning	Subsequent child aggression	<i>N</i> = 2467	Fragile Families Child Wellbeing
Example 3	Hospitalization	Subsequent physical health in mothers	<i>N</i> = 3831	Fragile Families Child Wellbeing

Lord's Paradox: Results

	Difference Scores		Residualized Change Score	
Data	d_1	$t(d_l)$	b_1	<u>t(</u> b ₁)
Lord's example	-0.02	-0.00	-15.60***	15.50
Reversed	15.61***	16.17	0.02	0.02
Sex costs talk	-0.08**	-2.77	0.07**	2.78
Reasoning	-0.03*	-2.35	0.04**	3.51
Hospitalization	0.16***	3.81	-0.15***	-4.15

Treatment	
Sex costs talk	
Reasoning	
Hospitalization	

 \rightarrow \rightarrow

 \rightarrow

Outcome Unprotected sex Child aggression Physical health