Optimal Design of Multisite-Randomized Trials Investigating Mediation Effects Under Unequal Costs

Zuchao "William" Shen University of Kansas

Wei Li University of Florida **Benjamin Kelcey** University of Cincinnati

Walter Leite University of Florida Huibin Zhang University of Tennessee, Knoxville

This presentation is based on research supported by the Spencer Foundation

An Example About Sample Allocation, Statical Power & Budget

- How many individuals are needed to have .80% power?
 - Effect size: d = 0.33
 - Proportion of variance explained: $R^2 = 0.50$

ズズズズ首首首首

\$9

Number of Individuals

(3) \$6,050

ጙጙጘ፞ጘ፞ጘ፞ጘ፞ጘ፞ጘ

\$10

Optimal Design for Single-Level Experiments: Optimize the Sampling Ratio Between Conditions

Optimal design parameter: $p = \frac{\sqrt{c/c^T}}{1+\sqrt{c/c^T}}$ with 0

(Cochran, 1963; Nam, 1973)

A Flexible Framework for 2-Level Cluster-Randomized Trials (CRTs)

$$n = \sqrt{\frac{(1-p)c_2 + pc_2^T}{(1-p)c_1 + pc_1^T}} \sqrt{\frac{(1-\rho)(1-R_1^2)}{\rho(1-R_2^2)}}$$

R package odr (Shen & Kelcey, 2023)

(Shen & Kelcey, 2020)

Optimal Design of Studies Investigating Main, Mediation, and Moderation Effects

	Main Effect		Mediation &	Moderation		
	CRTs	MRTs	CRTs	MRTs		
3-Level	(Shen & Kelcey, 2020) (Shen & Kelcey, 2022a)					
2-Level	(Shen & Kelcey, 2020)	(Shen & Kelcey, 2022b)				
<u>F</u> <u>S</u>	R package odr (Shen Shiny App (Shen & Kelo	n & Kelcey, 2023); cey, in progress)				

Cost Structures of Sampling In Multisite Trials

Optimal Allocation in Multisite Trials Investigating Main Effects

- p&n
 - Conditional variance of the outcome at the individual level
 - Conditional treatment-by-site variance
 - Cost information

$$\begin{split} \omega(1-R_{2m}^2)\big(c_1^T-c_1\big)p^2(1-p)^2n^2+(1-\rho)(1-R_1^2)\big(c_1^T-c_1\big)p^2n^2\\ &-(1-\rho)(1-R_1^2)(nc_1+c_2)(1-2p)\\ &=0, \end{split}$$

$$n = \sqrt{\frac{(1-\rho)(1-R_1^2)c_2}{p(1-p)\omega(1-R_{2m}^2)[pc_1^T + (1-p)c_1]}}$$

(Shen & Kelcey, 2022b)

1-1-1 Mediation

• Sobel Test • $\sigma_{ab}^2 = a^2 \sigma_b^2 + b^2 \sigma_a^2$

- Joint significance test
 - Power(ab) = power(a)×power(b).
 - Statistical power for each path is calculated in a non-central *t*distribution.

Optimal Design Parameters Under the Sobel Test

- a, b
- Conditional variance of the mediator at the individual level
- Conditional variance of the outcome at the individual level
- Conditional treatment-by-site variance
- Cost information

$$n = \sqrt{\frac{a^2(1-\rho)(1-R_1^2)c_2p(1-p)}{b^2\{(1-\rho_M)(1-R_1^{2M})[c_1(1-p)+c_1^Tp]+\omega(1-R_2^{2M})c_2\}(1-\rho_M)(1-R_1^{2M})}}$$

$$a^{2}(1-\rho)(1-R_{1}^{2})[-c_{1}n+c_{1}^{T}n](p-p^{2})n(1-\rho_{M})(1-R_{1}^{2M})p(1-p)+b^{2}[\omega(1-R_{2}^{2M})n+(1-\rho_{M})(1-R_{1}^{2M})][-c_{1}n+c_{1}^{T}n]n(1-\rho_{M})(1-R_{1}^{2M})n(1-\rho_{M})(1-R_{1}^{2M})[p(1-p)-n(1-\rho_{M})(1-R_{1}^{2M})(1-2p)]=0$$

Numerical solutions (Shen & Kelcey, 2020, 2022a)

Optimal Design of 1-1-1 Mediation Under the Joint Significance Test

- Ant colony optimization (ACO; Socha & Dorigo, 2008) algorithm
 - The ACO algorithm was inspired by the behavior of ant food foraging
 - The ACO algorithm creates artificial arts traveling through possible solution spaces to find an optimal solution that is linked to an objective function
- For the optimal design, we set the total cost as the objective function to be minimized

Steps of ACO

1. Initiate k (e.g., 50) sets of optimal design parameters of p and n (e.g., random sample 5 values for p and 10 values for n)

2. For each set of optimal design parameters, calculate the required number of sites to achieve a target power (80%), and calculate the required budget Stage

Iteration Stage

- 3. Form/update a probability density function across optimal design parameters (p & n)
 - 4. Sample additional sets of optima design parameters (p & n) according to the probability density function

Illustration			
		$\rho = \rho_M = .20$	
		$\omega = 0.01$	
► $c_1 = \$10, c_1^T = \$480, c_2 = \$100$ (Gray			r
Mediation Effect		d = .30	Main Effect
a = 0.2, b = .30			

- ▶ Joint Significance Test: n = 32.25 and $p = .126 J = 48 \rightarrow ~$117,000$
- Such a design can detect a main effect of .3 with 98.75% power
- If we use a conventional balanced design (p = .50 & n = 20), we will need 54% more budget to achieve 80% power for the mediation effect

- Optimal allocation n = 20.3 and p = .344, $J = 18 \rightarrow ~$ \$66,000 (80% power)
- If we use a conventional balanced design (p = .50 & n = 20), we will need 30% more budget to achieve 80% power for the main effect
- Such an optimal design for main effect can detect the mediation effect (a = 0.2, b = .30) with 47.17% power

Optimization Under the Joint Significance Test

\$117,000

100

Conclusion

- Optimal sample allocations are starting points
- Additional design parameters are needed in the design stage: Cost information
- A framework to simultaneously consider more than one effect in the same study design is needed

Contact Information: Zuchao "William" Shen <u>zuchao.shen@gmail.com</u>