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Educational data often contain a large degree of measurement error, 

missingness, and complexity due to the clustering of students. 

Traditional statistical inference via frequentist models and null 

hypothesis significance testing, while computationally efficient and 

relatively easy to interpret, fail to address these issues directly and 

often mask the degree of uncertainty in findings by focusing on point 

estimates and p-values. In this poster, we demonstrate a proposed

workflow for modeling and communicating relationships in 

educational data via Bayesian multilevel modeling. Benefits include 

the ability to encode domain knowledge via informative priors, using 

said priors to regularize estimates to prevent the over-fitting of 

models to data, inherent mechanisms to impute missing data, and the 

capacity to handle measurement error in the outcome and predictors.

Abstract

1) Specify hypotheses via Directed Acyclic Graphs
2) Specify priors & likelihood
3) Assess model convergence, predictive strength, and robustness 

across priors
4) Communicate full Posterior, confidence, and Region of Practical 

Equivalence
5)Evaluate evidence for given hypotheses 

Statistical Modeling in Educational Research

Comparison of Workflows

In this poster, I demonstrated the basic workflow required to 
test hypotheses in educational data via the rstanarm
package in R (Goodrich et al., 2023). Expansions to the given 
example include accounting for measurement error directly 
in the model and imputing missing variables directly in the 
model fitting process. Given the joint occurrence of noisy, 
nested data and often small sample sizes with frequent 
missing values, moving to a Bayesian analytic framework 
would allow educational researchers to more robustly 
recover data generating models and test scientific 
hypotheses of interest, vice the often uninteresting and 
unrealistic hypothesis that a given relationship is precisely 
zero in a population of interest. 

Discussion

Traditional statistical inference in educational research is based on 
frequentist statistical modeling and null hypothesis statistical testing 
(e.g., Murnane & Willett, 2010). This is problematic given the often 
small, nested, and idiosyncratic nature of data in many educational 
interventions (Tutwiler & Bressler, in press; Gelman & Carlin, 2014). 
Many tools designed to handle this data complexity in the traditional 
modeling toolkit require robust sample sizes and the acceptance of 
untenable assumptions (McElreath, 2016).  Taking a Bayesian modeling 
perspective allows for the modeling of sparse, complex data at the cost 
of computational time (Gelman et al., 2020; McElreath, 2016).

Basic Bayesian Workflow

Table 2. Comparison of traditional linear (LEFT) and Bayesian multilevel model (RIGHT) estimates of Y on  X 

and Z (Eqn. 1). 

Traditional Statistical Modeling Issue Potential Bayesian Solutions

Assumes static trend and random 

sampling

1) Data held constant and estimates 

sampled via MCMC

Testing a null hypothesis isn’t meaningful 

much of the time

1) Report full posterior & ROPE

2) Posterior contrast

Interpretation assumes no measurement 

error

1) Report full posterior & ROPE

2) Bayesian modeling of measurement 

error

Interpretation of NHST assumes adequate 

statistical power

1) No NHST

2) Report full posterior & ROPE

Missingness can lower power and/or ruin 

generalizability

1) No NHST 

2) Bayesian imputation

Outliers can majorly bias estimates 1) Regularizing priors

Models can “over-fit” the data and do a 

bad job predicting trends in new data sets

1) Regularizing priors

2) Bayesian model averaging/stacking

Statistical interactions can be difficult to 

interpret, especially in non-linear models

1) Posterior contrast

Table 1. Potential Bayesian statistical modeling solutions to common issues in statistical modeling in educational research
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Figure 1. Two DAGs depicting the effects of x and z on an outcome of interest (y). The 

left DAG assumes independent effects of x and z, the right DAG assumes x is influenced 

by z.

𝑌𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎)

𝜇 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖 + 𝛽3(𝑋𝑖 ∗ 𝑍𝑖)

𝛽0 = 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑐𝑙𝑎𝑠𝑠)

𝛽1,2,3 = 𝑁𝑜𝑟𝑚𝑎𝑙(0,1)

𝜎~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1)

𝒀𝒆𝒔𝒕,𝒊~𝑵𝒐𝒓𝒎𝒂𝒍(𝝁, 𝝈)

𝜇 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖 + 𝛽3(𝑋𝑖 ∗ 𝑍𝑖)

𝛽0 = 𝑁𝑜𝑟𝑚𝑎𝑙(0,10)

𝛽1,2,3 = 𝑁𝑜𝑟𝑚𝑎𝑙(0,1)

𝜎~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1)

𝑌𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎)

𝜇 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖 + 𝛽3(𝑋𝑖 ∗ 𝑍𝑖)

𝛽0 = 𝑁𝑜𝑟𝑚𝑎𝑙(0,10)

𝛽1,2,3 = 𝑁𝑜𝑟𝑚𝑎𝑙(0,1)

𝜎~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1)

𝒀𝒐𝒃𝒔,𝒊~𝑵𝒐𝒓𝒎𝒂𝒍(𝒀𝒆𝒔𝒕,𝒊, 𝒀𝒔𝒆,𝒊) 𝑿𝒊 = 𝑵𝒐𝒓𝒎𝒂𝒍(𝝅, 𝝈𝒙)

𝝈𝒙~ 𝑬𝒙𝒑𝒐𝒏𝒆𝒏𝒕𝒊𝒂𝒍(𝟏)

Eqn. 1. Likelihood & priors for linear 

model of Y given X and Z

Eqn. 2. Likelihood & priors for linear model of 

Y given X and Z accounting for measurement 

error in Y

Eqn. 3. Likelihood & priors for linear model of 

Y given X and Z accounting for missingness in X

𝝅 = 𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏)𝜎𝑐𝑙𝑎𝑠𝑠~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1)

𝜎𝑐𝑙𝑎𝑠𝑠~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1)

𝜎𝑐𝑙𝑎𝑠𝑠~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1)

Figure 2. Posterior estimates of Eqn. 1, showing  random effects (LEFT) and Region of Practical Equivalence (RIGHT) 

Figure 3. Relationship between X and Y for high (1) and average (0) values of Z (LEFT), and posterior contrast estimate 

X (RIGHT).

Figure 4. Relationship between X and Y for high (1) and average (0) values of Z (LEFT), and posterior contrast estimate 

X (RIGHT).
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