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Table 2. Comparison of traditional linear (LEFT) and Bayesian multilevel model (RIGHT) estimates of Y on X
and Z (Eqn. 1).
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1) Specify hypotheses via Directed Acyclic Graphs

Statistical Modeling in Educational Research 2) Specify priors & likelihood

3) Assess model convergence, predictive strength, and robustness
across priors

4) Communicate full Posterior, confidence, and Region of Practical
Equivalence

5) Evaluate evidence for given hypotheses

Traditional statistical inference in educational research is based on
frequentist statistical modeling and null hypothesis statistical testing
(e.g., Murnane & Willett, 2010). This is problematic given the often
small, nested, and idiosyncratic nature of data in many educational

interventions (Tutwiler & Bressler, in press; Gelman & Carlin, 2014). 2 L : B
Many tOOIS deSigned tO handle thlS data CompIeXity in the traditional Figure 3. Relationship between X and Y for high (1) and average (0) values of Z (LEFT), and posterior contrast estimate
modeling toolkit require robust sample sizes and the acceptance of X RIGHT).
untenable assumptions (McElreath, 2016). Taking a Bayesian modeling Directed Acyclic Graphs (DAGs)
perspective allows for the modeling of sparse, complex data at the cost
of computational time (Gelman et al., 2020; McElreath, 2016). ' x
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