Estimating Treatment Effects in Partially Clustered Randomized Controlled Trials with Missing Data: Challenges and Solutions

Manshu Yang

Department of Psychology University of Rhode Island

The 2023 M3 Conference June 27, 2023

• Feature 1: Partially Clustered Structure

Three Key Features of Partially Clustered RCTs

- Feature 1: Partially Clustered Structure
- Feature 2: Heteroscedastic Residual Variances

Three Key Features of Partially Clustered RCTs

- Feature 1: Partially Clustered Structure
- Feature 2: Heteroscedastic Residual Variances
- Feature 3: Small Sample Sizes
 - fewer than 20 clusters, fewer than 30 persons per cluster

• Methods exist to analyze partially clustered data

• Baldwin et al., 2011; Bauer et al., 2008; Candlish et al., 2018; Kelcey et al., 2020; Lai and Kwok, 2014; Lee and Thompson, 2005; Lohr et al., 2014; Moerbeek and Wong, 2008; Roberts and Roberts, 2005; Lachowicz et al., 2015; Sterba, 2017; Sterba et al., 2014

- Methods exist to analyze partially clustered data
 - Baldwin et al., 2011; Bauer et al., 2008; Candlish et al., 2018; Kelcey et al., 2020; Lai and Kwok, 2014; Lee and Thompson, 2005; Lohr et al., 2014; Moerbeek and Wong, 2008; Roberts and Roberts, 2005; Lachowicz et al., 2015; Sterba, 2017; Sterba et al., 2014
- Missing data are inevitable in partially clustered RCTs

- Methods exist to analyze partially clustered data
 - Baldwin et al., 2011; Bauer et al., 2008; Candlish et al., 2018; Kelcey et al., 2020; Lai and Kwok, 2014; Lee and Thompson, 2005; Lohr et al., 2014; Moerbeek and Wong, 2008; Roberts and Roberts, 2005; Lachowicz et al., 2015; Sterba, 2017; Sterba et al., 2014
- Missing data are inevitable in partially clustered RCTs
- However... little is known on how to handle missing data in partially clustered RCTs

- Three missing data mechanisms (Rubin, 1976)
 - Missing Completely At Random (MCAR)
 - Missing At Random (MAR)
 - Missing Not At Random (MNAR)
- Current study focuses on: auxiliary-variable-dependent MAR (A-MAR)
 - auxiliary variable (AV): not of primary research interest but drives missingness
- Both outcome and covariates could be incomplete
 - person-level covariates (e.g., age, pretest score)
 - cluster-level covariates (e.g., intervention fidelity)

Methods of Handling Missing Data in Partially Clustered RCTs

- Issue 1: How to handle missing covariates involving random slopes?
 - maximum likelihood estimation (MLE) may not work
 - standard multiple imputation (joint modeling or chained equations) may not work
 - Recommended: substantive-model-compatible sequential modeling imputation
 - sequential modeling multiple imputation (MI-SM) (Carpenter and Kenward, 2013; Goldstein et al., 2014; Bartlett et al., 2015; Enders et al., 2020; Lüdtke et al., 2020)
 - sequential fully Bayesian estimation (SFB) (Erler et al., 2016; Zhang and Wang, 2017)

Methods of Handling Missing Data in Partially Clustered RCTs

- Issue 1: How to handle missing covariates involving random slopes?
 - maximum likelihood estimation (MLE) may not work
 - standard multiple imputation (joint modeling or chained equations) may not work
 - Recommended: substantive-model-compatible sequential modeling imputation
 - sequential modeling multiple imputation (MI-SM) (Carpenter and Kenward, 2013; Goldstein et al., 2014; Bartlett et al., 2015; Enders et al., 2020; Lüdtke et al., 2020)
 - sequential fully Bayesian estimation (SFB) (Erler et al., 2016; Zhang and Wang, 2017)
- Issue 2: How to handle heteroscedastic residual variances?
 - Recommended: arm-specific imputation
 - separate imputations for treatment and control arms (Carpenter and Kenward, 2013; Enders and Gottschall, 2011; Yamaguchi et al., 2020)

Methods of Handling Missing Data in Partially Clustered RCTs

- Issue 1: How to handle missing covariates involving random slopes?
 - maximum likelihood estimation (MLE) may not work
 - standard multiple imputation (joint modeling or chained equations) may not work
 - Recommended: substantive-model-compatible sequential modeling imputation
 - sequential modeling multiple imputation (MI-SM) (Carpenter and Kenward, 2013; Goldstein et al., 2014; Bartlett et al., 2015; Enders et al., 2020; Lüdtke et al., 2020)
 - sequential fully Bayesian estimation (SFB) (Erler et al., 2016; Zhang and Wang, 2017)
- Issue 2: How to handle heteroscedastic residual variances?
 - Recommended: arm-specific imputation
 - separate imputations for treatment and control arms (Carpenter and Kenward, 2013; Enders and Gottschall, 2011; Yamaguchi et al., 2020)
- Issue 3: Do standard missing data handling methods work with small sample sizes?

- MI-JM-SIM: simultaneous MI via joint modeling
- **MI-JM-AS**: arm-specific MI via joint modeling
- MI-SM-AS: arm-specific MI via sequential modeling
- SFB-NON: sequential fully Bayesian estimation using non-informative priors
- SFB-WEAK: sequential fully Bayesian estimation using weakly-informative priors
- In each Bayesian iteration step:
 - Joint modeling (JM): impute outcome and covariates together
 - assuming multivariate normality
 - Sequential modeling (SM): impute covariates first then impute outcome
 - imputation model compatible with analysis model

- Level-1 (Within Cluster) Model:
 - ANCOVA model with heteroscedastic residual variances

$$Y_{ij} = \beta_{0j} + \beta_{1j} TREAT_{ij} + \beta_{2j} X 1_{ij} + e_{ij}$$
(1)

$$e_{ij}|(TREAT = 0) \sim N(0, \sigma_{e_0}^2)$$

$$\tag{2}$$

$$e_{ij}|(TREAT = 1) \sim N(0, \sigma_{e_1}^2) \tag{3}$$

- Level-2 (Between Cluster) Model:
 - fixed intercept (β_{0j}) indicates unclustered control arm
 - random slope of *TREAT* (β_{1j}) indicates clustered treatment arm
 - effect of X1 on Y (β_{2i}) could be fixed or random

$$\beta_{0j} = \gamma_{00} \tag{4}$$

$$\beta_{1j} = \gamma_{10} + \gamma_{11} X 2_j + u_{1j} \tag{5}$$

$$\beta_{2j} = \gamma_{20} + u_{2j} \quad or \quad \beta_{2j} = \gamma_{20}$$
 (6)

• Primary interest: average treatment effect γ_{10}

- Two auxiliary variables: person-level A1 and cluster-level A2
- Missingness in person-level covariate X1 depends on A1
- Missingness in cluster-level covariate X2 depends on A2
- Missingness in outcome Y depends on A1 + A2

- Factors manipulated:
 - average treatment effect: 0 or 0.8
 - missing data scenario: incomplete Y and X1 vs. incomplete Y and X2
 - No. of clusters: *c* = 4, 8, 16
 - cluster size: *m* = 5, 15, 30
 - ratio of person-level residual variances between arms: $\theta = 0.3, 1, 3$
 - % missing: 10% or 30%
 - X1 effect: fixed or random
- 1,000 Replications
- Compared 5 missing data analysis methods:
 - MI-JM-SIM, MI-JM-AS, MI-SM-AS
 - SFB-NON, SFB-WEAK

Results: Estimating Average Treatment Effect

Fixed X1 effect, ATE = 0.8, **30% missing**

Incomplete	Method	% Relative Bias			
Variables		$\theta = 0.3$	$\theta = 1$	$\theta = 3$	
Y and X1	MI-JM-SIM	-6.8	-1.5	7.8	
	MI-JM-AS	-0.5	-0.8	-0.7	
	MI-SM-AS	0.2	-0.1	-0.1	
	SFB-NON	-5.1	0.6	11.2	
	SFB-WEAK	-5.9	-0.2	10.6	
Y and X2	MI-JM-SIM	-9.6	-4.5	4.7	
	MI-JM-AS	-2.7	-1.8	-1.7	
	MI-SM-AS	-3.5	-2.4	-2.4	
	SFB-NON	-7.7	-0.7	9.6	
	SFB-WEAK	-8.5	-1.7	8.7	

• θ = ratio of person-level residual variances between arms

Results: Estimating Cluster-Level Residual Variance *ATE* = 0.8, **30**% missing

Incomplete	Method	% Relative Bias					
		Fixed X1, $c = 4$		Fixe	ed X1, c	= 8	
Variables		m=5	15	30	m=5	15	30
Y and X1	MI-JM-SIM	24.8	8.4	6.4	14.3	1	-0.8
	MI-JM-AS	24.7	8.9	6.9	14.9	1.8	-0.4
	MI-SM-AS	204.8	27.6	12.8	74.8	9.9	1.7
	SFB-NON	545.4	477.8	461.8	216.9	166.8	154.5
	SFB-WEAK	161.1	146.6	153.1	31	29	31.3
Y and X2	MI-JM-SIM	17.4	2.8	5.3	8	0.2	0.9
	MI-JM-AS	24.3	7.5	9	11.6	5.1	5.2
	MI-SM-AS	185	28.6	18.9	123.6	20.5	12.8
	SFB-NON	536.1	473.2	460.3	212.4	168.4	159.1
	SFB-WEAK	132.4	109.6	116.6	19.6	20.8	25.3

• c = No. of clusters

• m =cluster size

Results: Estimating Cluster-Level Residual Variance (Cont.) *ATE* = 0.8, **30**% missing

Incomplete	Method	% Relative Bias					
		Fixed	X1, c =	= 16	Rando	om X1, c	r = 16
Variables		m=5	15	30	m=5	15	30
Y and X1	MI-JM-SIM	8.5	1.7	0.6	-58.1	-70.7	-70.5
	MI-JM-AS	8	2.6	1	-51.9	-68.9	-69.6
	MI-SM-AS	21.3	6.3	1.8	39.8	7.4	-0.3
	SFB-NON	106.2	75.7	67.4	170.9	91.1	70.4
	SFB-WEAK	3.5	10	10.8	37.2	8.9	7.9
Y and X2	MI-JM-SIM	0.8	-1.3	0.1	-46.4	-56.8	-56.9
	MI-JM-AS	4.5	2.9	4.1	-43	-56	-56.4
	MI-SM-AS	22.4	9.4	7.9	32.8	3.8	-3
	SFB-NON	102.4	75.4	69.2	169.3	95	76.3
	SFB-WEAK	-5.4	4.3	7.6	38.5	17.7	16.1

• c = No. of clusters

• m =cluster size

Results: Type I Error for Detecting Treatment Effect

fixed X1 effect, 30% missing, $m = 30, \theta = 0.3$

If X1 effect is	Best Performing Method
Fixed	MI-JM-AS (joint modeling)
Random	MI-SM-AS (sequential modeling)

If X1 effect is	Best Performing Method
Fixed	MI-JM-AS (joint modeling)
Random	MI-SM-AS (sequential modeling)

• Priors may have more influence on sequential modeling MI than joint modeling MI, given very few clusters (4 or 8).

If X1 effect is	Best Performing Method
Fixed	MI-JM-AS (joint modeling)
Random	MI-SM-AS (sequential modeling)

- Priors may have more influence on sequential modeling MI than joint modeling MI, given very few clusters (4 or 8).
- MI of the entire sample assuming equal residual variance across arms (MI-JM-SIM) is not recommended.

If X1 effect is	Best Performing Method
Fixed	MI-JM-AS (joint modeling)
Random	MI-SM-AS (sequential modeling)

- Priors may have more influence on sequential modeling MI than joint modeling MI, given very few clusters (4 or 8).
- MI of the entire sample assuming equal residual variance across arms (MI-JM-SIM) is not recommended.
- Sequential fully Bayesian approach is not recommended.

References

- Baldwin, S. A., Bauer, D. J., Stice, E., & Rohde, P. (2011). Evaluating models for partially clustered designs. *Psychological Methods*, 16 (2), 149-165.
- Bauer, D. J., Sterba, S. K., & Hallfors, D. D. (2008). Evaluating group-based interventions when control participants are ungrouped. *Multivariate Behavioral Research*, 43 (2), 210-236.
- Candlish, J., Teare, M., Dimairo, M., Flight, L., Mandefield, L., & Walters, S. (2018). Appropriate statistical methods for analysing partially nested randomised controlled trials with continuous outcomes: A simulation study. *BMC Medical Research Methodology*, 18 (1), 1-17.
- Kelcey, B., Bai, F., & Xie, Y. (2020). Statistical power in partially nested designs probing multilevel mediation. *Psychotherapy Research*, 30 (8), 1061-1074.
- Lee, K. J., & Thompson, S. G. (2005). The use of random effects models to allow for clustering in individually randomized trials. *Clinical Trials*, 2 (2), 163-173.
- Lohr, S. L., Schochet, P. Z., & Sanders, E. A. (2014). Partially nested randomized controlled trials in education research: A guide to design and analysis (tech. rep.). National Center for Education Research, Institute of Education Sciences, U.S. Department of Education.
- Roberts, C., & Roberts, S. A. (2005). Design and analysis of clinical trials with clustering effects due to treatment. *Clinical Trials*, 2 (2), 152-162.
- Lachowicz, M. J., Sterba, S. K., & Preacher, K. J. (2015). Investigating multilevel mediation with fully or partially nested data. *Group Processes and Intergroup Relations*, 18 (3), 274-289.
- Sterba, S. K., Preacher, K. J., Forehand, R., Hardcastle, E. J., Cole, D. A., & Compas, B. E. (2014). Structural equation modeling approaches for analyzing partially nested data. *Multivariate Behavioral Research*, 49 (2), 93-118.

References

- Rubin, D. B. (1976). Inference and missing data. *Biometrika*, 63 (3), 581-592.
- Carpenter, J. R., & Kenward, M. G. (2013). Multiple imputation and its application. Chichester, West Sussex, United Kingdom: John Wiley & Sons.
- Goldstein, H., Carpenter, J. R., & Browne, W. J. (2014). Fitting multilevel multivariate models with missing data in responses and covariates that may include interactions and non-linear terms. *Journal of the Royal Statistical Society: Series A (Statistics in Society)*, 177 (2), 553-564.
- Bartlett, J. W., Seaman, S. R., White, I. R., & Carpenter, J. R. (2015). Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model. *Statistical Methods in Medical Research*, 24 (4), 462-487.
- Enders, C. K., Du, H., & Keller, B. T. (2020). A model-based imputation procedure for multilevel regression models with random coefficients, interaction effects, and nonlinear terms. *Psychological Methods*, 25 (1), 88-112.
- Lüdtke, O., Robitzsch, A., & West, S. G. (2020). Regression models involving nonlinear effects with missing data: A sequential modeling approach using Bayesian estimation. *Psychological Methods*, 25 (2), 157-181.
- Erler, N. S., Rizopoulos, D., Rosmalen, J. v., Jaddoe, V. W., Franco, O. H., & Lesaffre, E. M. (2016). Dealing with missing covariates in epidemiologic studies: a comparison between multiple imputation and a full Bayesian approach. *Statistics in Medicine*, 35 (17), 2955-2974.
- Zhang, Q., & Wang, L. (2017). Moderation analysis with missing data in the predictors. *Psychological Methods*, 22 (4), 649-666.
- Enders, C. K., & Gottschall, A. C. (2011). Multiple imputation strategies for multiple group structural equation models. *Structural Equation Modeling*, 18 (1), 35-54.
- Yamaguchi, Y., Ueno, M., Maruo, K., & Gosho, M. (2020). Multiple imputation for longitudinal data in the presence of heteroscedasticity between treatment groups. *Journal of Biopharmaceutical Statistics*, 30 (1), 178-196.

Thank you !

For further information, please contact:

Manshu Yang Email: myang@uri.edu