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hree Key Features of Partially Clustered RCTs

o Feature 1: Partially Clustered Structure
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ree Key Features of Partially Clustered RCTs

o Feature 1: Partially Clustered Structure
o Feature 2: Heteroscedastic Residual Variances
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ree Key Features of Partially Clustered RCTs

o Feature 1: Partially Clustered Structure
o Feature 2: Heteroscedastic Residual Variances

o Feature 3: Small Sample Sizes
o fewer than 20 clusters, fewer than 30 persons per cluster

Treatment Arm

Therapist A Therapist B

(oar) (@)

TherapistC  Therapist D

(oa) (aae)

Manshu Yang




sing Data: An Inevitable Challenge in Partially Clustered RCTs

o Methods exist to analyze partially clustered data
o Baldwin et al., 2011; Bauer et al., 2008; Candlish et al., 2018; Kelcey et al., 2020; Lai
and Kwok, 2014; Lee and Thompson, 2005; Lohr et al., 2014; Moerbeek and Wong,
2008; Roberts and Roberts, 2005; Lachowicz et al., 2015; Sterba, 2017; Sterba et al.,
2014
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o Missing data are inevitable in partially clustered RCTs

o However... little is known on how to handle missing data in partially clustered RCTs
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g Data Mechanisms

o Three missing data mechanisms (Rubin, 1976)

o Missing Completely At Random (MCAR)

o Missing At Random (MAR)

o Missing Not At Random (MNAR)
o Current study focuses on: auxiliary-variable-dependent MAR (A-MAR)

o auxiliary variable (AV): not of primary research interest but drives missingness
o Both outcome and covariates could be incomplete

o person-level covariates (e.g., age, pretest score)
o cluster-level covariates (e.g., intervention fidelity)
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ds of Handling Missing Data in Partially Clustered RCTs

o Issue 1: How to handle missing covariates involving random slopes?
o maximum likelihood estimation (MLE) may not work
o standard multiple imputation (joint modeling or chained equations) may not work
o Recommended: substantive-model-compatible sequential modeling imputation
o sequential modeling multiple imputation (MI-SM) (Carpenter and Kenward, 2013;
Goldstein et al., 2014; Bartlett et al., 2015; Enders et al., 2020; Liidtke et al., 2020)
o sequential fully Bayesian estimation (SFB) (Erler et al., 2016; Zhang and Wang, 2017)
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o maximum likelihood estimation (MLE) may not work
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o Recommended: substantive-model-compatible sequential modeling imputation

o sequential modeling multiple imputation (MI-SM) (Carpenter and Kenward, 2013;
Goldstein et al., 2014; Bartlett et al., 2015; Enders et al., 2020; Liidtke et al., 2020)
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o Issue 2: How to handle heteroscedastic residual variances?
o Recommended: arm-specific imputation

o separate imputations for treatment and control arms (Carpenter and Kenward, 2013; Enders
and Gottschall, 2011; Yamaguchi et al., 2020)

o Issue 3: Do standard missing data handling methods work with small sample sizes?




:search Question: Which method performs the best?

Q MI-JM-SIM: simultaneous MI via joint modeling

Q MI-JM-AS: arm-specific MI via joint modeling

Q MI-SM-AS: arm-specific MI via sequential modeling

©Q SFB-NON: sequential fully Bayesian estimation using non-informative priors

O SFB-WEAK: sequential fully Bayesian estimation using weakly-informative priors

o In each Bayesian iteration step:
o Joint modeling (JM): impute outcome and covariates together
o assuming multivariate normality
o Sequential modeling (SM): impute covariates first then impute outcome
o imputation model compatible with analysis model
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ntial Analysis Model in This Study

o Level-1 (Within Cluster) Model:
o ANCOVA model with heteroscedastic residual variances

Yij = B()j + BUTREAT,'J' + ﬁszlij + ejj (D)
e;j| (TREAT = 0) ~ N(0, 07, ) (2)
e;j| (TREAT = 1) ~ N(0, 07 ) (3)

o Level-2 (Between Cluster) Model:

o fixed intercept () indicates unclustered control arm
o random slope of TREAT (f3);) indicates clustered treatment arm
o effect of X1 on Y () could be fixed or random

Boj = Y00 4)
B = v10 + 711X2; + uy; %)
Boj = Y20 + Uz or B = Y0 (6)

o Primary interest: average treatment effect v
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sing Data Model in This Study

o Two auxiliary variables: person-level Al and cluster-level A2
o Missingness in person-level covariate X1 depends on Al
o Missingness in cluster-level covariate X2 depends on A2

o Missingness in outcome Y depends on Al + A2
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e Carlo Simulation Design

o Factors manipulated:
o average treatment effect: O or 0.8
missing data scenario: incomplete Y and X1 vs. incomplete Y and X2
No. of clusters: c =4, 8, 16
cluster size: m =5, 15, 30
ratio of person-level residual variances between arms: § =0.3, 1, 3
% missing: 10% or 30%
o X1 effect: fixed or random

© 6 06 o o

o 1,000 Replications

o Compared 5 missing data analysis methods:
o MI-JM-SIM, MI-JM-AS, MI-SM-AS
o SFB-NON, SFB-WEAK
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Its: Estimating Average Treatment Effect

d X1 effect, ATE = 0.8, 30% missing

Incomplete  Method % Relative Bias

Variables =03 =1 6=3

Y and X1 MI-JM-SIM -6.8 -1.5 7.8
MI-JM-AS -0.5 -0.8 -0.7
MI-SM-AS 0.2 -0.1 -0.1
SFB-NON -5.1 0.6 11.2

SFB-WEAK -5.9 -0.2 10.6
Yand X2  MI-JM-SIM -9.6 -4.5 4.7

MI-JM-AS -2.7 -1.8 -1.7
MI-SM-AS -3.5 2.4 2.4
SFB-NON =17 -0.7 9.6
SFB-WEAK -8.5 -1.7 8.7

o 6 = ratio of person-level residual variances between arms
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: Estimating Cluster-Level Residual Variance

0.8, 30% missing

Incomplete Method

% Relative Bias

Fixed X1,c =4 Fixed X1,c =8
Variables m=5 15 30 m=5 15 30
Y and X1 MI-JM-SIM 24.8 8.4 6.4 14.3 1 -0.8
MI-JM-AS 24.7 8.9 6.9 14.9 1.8 -04
MI-SM-AS 2048 27.6 128 74.8 9.9 1.7
SFB-NON 5454 477.8 461.8 2169 166.8 154.5
SFB-WEAK 161.1 146.6 153.1 31 29 313
Y and X2  MI-IM-SIM 17.4 2.8 53 8 0.2 0.9
MI-JM-AS 24.3 7.5 9 11.6 5.1 5.2
MI-SM-AS 185 28.6 189 123.6 205 128
SFB-NON 536.1 473.2 460.3 2124 1684 159.1
SFB-WEAK 1324 109.6 116.6 196 208 253

o ¢ = No. of clusters

o m = cluster size
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ts: Estimating Cluster-Level Residual Variance (Cont.)

0.8, 30% missing

Incomplete Method % Relative Bias
Fixed X1, c = 16 Random X1, ¢ = 16
Variables m=5 15 30 m=5 15 30
Y and X1 MI-IM-SIM 85 1.7 0.6 -58.1 -70.7 -70.5
MI-IM-AS 8 26 1 -51.9 -68.9 -69.6

MI-SM-AS 213 63 1.8 39.8 74 03
SFB-NON 106.2 75.7 67.4 1709 911 704
SFB-WEAK 35 10 10.8 37.2 8.9 7.9
Yand X2  MI-JM-SIM 08 -1.3 0.1 -46.4 -56.8 -56.9
MI-JM-AS 45 29 41 -43 -56 -56.4
MI-SM-AS 224 94 79 32.8 3.8 -3
SFB-NON 1024 754 69.2 169.3 95 763
SFB-WEAK  -54 43 7.6 385 17.7 16.1

o ¢ = No. of clusters

o m = cluster size
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esults: Type I Error for Detecting Treatment Effect

ed X1 effect, 30 % missing, m = 30,0 = 0.3
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o Which methods perform the best in handling A-MAR data in partially clustered RCT?
Arm-specific MI methods

If X1 effect is... Best Performing Method
Fixed MI-JM-AS (joint modeling)
Random MI-SM-AS (sequential modeling)
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o Which methods perform the best in handling A-MAR data in partially clustered RCT?
Arm-specific MI methods

If X1 effect is... Best Performing Method
Fixed MI-JM-AS (joint modeling)
Random MI-SM-AS (sequential modeling)

o Priors may have more influence on sequential modeling MI than joint modeling MI,
given very few clusters (4 or 8).

o MI of the entire sample assuming equal residual variance across arms (MI-JM-SIM)
is not recommended.

o Sequential fully Bayesian approach is not recommended.
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Thank you !

For further information, please contact:

Manshu Yang
Email: myang@uri.edu
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