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The fully 
disaggregated 
model
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The fully disaggregated model: 

Reduced form:
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The conflated 
model
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The conflated model: 

Reduced form:
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Collinearity

Consequences for 
single-level regression:

 Very large SEs 
(reduced power) 

 Unstable point 
estimates

 Substantively 
impossible point 
estimates
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Collinearity in 
multilevel 
data

 Consensus across (very few) studies: 
 Enlarged SEs of fixed effect estimates

 Larger sample size helps

 Contradictory results across (very few) studies: 
 ICC𝑦 

 Relative bias in random effect (co)variance estimates

 Many unanswered questions, such as: 
 How do the consequences of collinearity change across 

different centering specifications (e.g., the conflated vs. the 
disaggregated model)? 

Clark (2013); Hendrickx (2018); Shieh & Fouladi (2003); Stinnett (1993); Yu et al. (2015)  7



Study goals

 Analytics: Establish the consequences of collinearity for the 
conflated model

 Simulation: Clarify how the consequences of collinearity 
change across model specifications and data characteristics

 Diagnostics: Demonstrate how collinearity diagnostics are 
influenced by centering and disaggregation 

8



Outline

 Background

 Analytics

 Simulation

 Diagnostics

 Conclusions

9



The 
generalized 
least squares 
(GLS) 
estimator

Scott & Holt (1982)
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GLS estimator: 
maximally 
general form
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The GLS 
estimator is 
informed by 
predictor 
covariance

Muthén (1990):
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Expressing components of the maximally general GLS estimator in terms 
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Key takeaways

 Predictor covariance (a.k.a. predictor collinearity) 
systematically influences slope estimates in the conflated 
multilevel model

 Departure from single-level regression
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Simulation 
study design

Held constant: 

 Three continuous level-1 predictors: 𝑥1𝑖𝑗 , 𝑥2𝑖𝑗, 𝑥3𝑖𝑗

 Continuous level-1 outcome: 𝑦𝑖𝑗

 Within- and between-cluster effects

 Total 𝑣𝑎𝑟(𝑦𝑖𝑗)

 Sample size at each level 

Varied: 

𝑟𝑊: within-cluster 𝑐𝑜𝑟(𝑥1𝑖𝑗, 𝑥2𝑖𝑗) –0.9, –0.8, –0.7, –0.6, 0, 0.6, 0.7, 0.8, 0.9

𝑟𝐵: between-cluster 𝑐𝑜𝑟(𝑥1𝑖𝑗, 𝑥2𝑖𝑗) –0.9, –0.8, –0.7, –0.6, 0, 0.6, 0.7, 0.8, 0.9

ICC𝑦 0.05, 0.3

ICC𝑥1𝑖𝑗
, ICC𝑥2𝑖𝑗

0.05, 0.3

15



Simulation 
study design

 Conflated model
 Level 1: 𝑥1𝑖𝑗, 𝑥2𝑖𝑗, 𝑥3𝑖𝑗

 Fully disaggregated model 
 Level 1: 𝑥1𝑖𝑗 − ҧ𝑥1.𝑗 , 𝑥2𝑖𝑗 − ҧ𝑥2.𝑗 , 𝑥3𝑖𝑗 − ത𝑥3.𝑗

 Level 2: ҧ𝑥1.𝑗, ҧ𝑥2.𝑗, ҧ𝑥3.𝑗

 Partially disaggregated model
 Level 1: 𝑥1𝑖𝑗, 𝑥2𝑖𝑗 − ഥ𝑥2.𝑗 , 𝑥3𝑖𝑗 − ഥ𝑥3.𝑗

 Level 2: ҧ𝑥2.𝑗, ҧ𝑥3.𝑗

 Outcomes: 
 Fixed effect estimates

 Relative bias in the fixed effect estimate SEs 

 Relative bias in the random effect (co)variance estimates
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Results: 
conflated 
model

 Both 𝑟𝑊 and 𝑟𝐵 influenced fixed effect estimates 

 Fixed effect estimates were most strongly influenced when…
 ICC𝑦 was small

 ICC𝑥1𝑖𝑗
 and ICC𝑥2𝑖𝑗

 were large

 Did not examine SEs or random effect (co)variance estimates 
due to problematic nature of fixed effect estimates
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Results: 
partially 
disaggregated 
model

 Conflated slope of 𝑥1𝑖𝑗: 
 Not affected 

 Within-cluster slope of 𝑥2𝑖𝑗:
 𝑟𝑊 × ICC𝑦

 𝑟𝑊 × predictor ICCs

 Between-cluster slope of 𝑥2𝑖𝑗:
 𝑟𝐵 × predictor ICCs
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Results: 
partially 
disaggregated 
model

Estimated 
within-cluster 
slope of 𝑥2𝑖𝑗

ICC𝑦 = 0.05 ICC𝑦 = 0.30

𝑟𝑊
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Results: 
partially 
disaggregated 
model

Estimated 
within-cluster 
slope of 𝑥2𝑖𝑗
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Results: 
partially 
disaggregated 
model

Estimated 
between-cluster 
slope of 𝑥2𝑖𝑗
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Takeaways 
from the 
partially 
disaggregated 
model

 When predictors are collinear and some are left uncentered whereas 
other, likely the most substantively important, predictors are 
disaggregated….

 That disaggregation will not always yield unbiased estimates!
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Results: fully 
disaggregated 
model

 Fixed effect estimates
 Unbiased in all conditions 

 Relative bias in the SEs of fixed effect estimates
 Within-cluster estimates: main effect of 𝑟𝑊

 Relative bias in the random effect (co)variance estimates 
 𝑟𝑊 interacted with all other design factors 
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Results: fully 
disaggregated 
model

Standard error 
of the within-
cluster effect of 
𝑥1𝑖𝑗

𝑟𝑊
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Results: fully 
disaggregated 
model

Random slope 
variance 
estimates

ICC𝑥1𝑖𝑗
= 0.05 ICC𝑥1𝑖𝑗

= 0.30

𝑟𝑊

Relative bias in 𝝉𝟏𝟏 
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Results: fully 
disaggregated 
model

Random slope 
variance 
estimates

ICC𝑥2𝑖𝑗
= 0.05 ICC𝑥2𝑖𝑗

= 0.30

𝑟𝑊

Relative bias in 𝝉𝟐𝟐 
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Results: fully 
disaggregated 
model

Random slope 
covariance 
estimates

ICC𝑥1𝑖𝑗
= 0.05 ICC𝑥1𝑖𝑗

= 0.30

IC
C

𝑥
2

𝑖𝑗
=

0
.0

5
IC

C
𝑥

2
𝑖𝑗

=
0

.3
0

𝑟𝑊

Relative bias in 𝝉𝟐𝟏 

27



Takeaways 
from the fully 
disaggregated 
model

 Results mimicked single-level regression 
 Point estimates unaffected

 Standard errors enlarged 

 Standard errors:
 True increase in variability

 AND upward bias in estimated SEs

 Random effect (co)variance estimates:
 Influenced by 𝑟𝑊

 Often extremely biased
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Collinearity 
diagnostics

 Variance Inflation Factor (VIF)
 Comes from the formula for the variance of a slope estimate 

(single-level regression ) 

 Interpretation: multiplicative factor by which 𝑣𝑎𝑟 𝛽𝑖  is increased 
due to collinearity in the data set 

 𝑣𝑎𝑟 𝛽𝑖 =
𝑣𝑎𝑟𝑦

𝑣𝑎𝑟𝑥𝑖

1−𝑅𝑦
2

𝑛−𝑘−1

1

1−𝑅𝑥𝑖
2

 Condition number (𝜅)
 Do an eigen-decomposition of 𝑿′𝑿 and obtain eigenvalues 

𝜆1, 𝜆2, … , 𝜆𝑘

𝜅 =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

 Interpretation: “sensitivity” of regression results to small changes 
in the data set
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Simulated 
data

Held constant: 

 Three continuous level-1 predictors: 𝑥1𝑖𝑗 , 𝑥2𝑖𝑗 , 𝑥3𝑖𝑗

 𝑥3𝑖𝑗 was minimally correlated with 𝑥1𝑖𝑗 and 𝑥2𝑖𝑗

Varied: 

 Within- and between-cluster correlation of 𝑥1𝑖𝑗 and 𝑥2𝑖𝑗 (𝒓𝑾, 𝒓𝑩)

 ICC𝑥1𝑖𝑗
 and ICC𝑥2𝑖𝑗

 

 These factors incidentally vary the “total” correlation of 𝑥1𝑖𝑗 and 𝑥2𝑖𝑗 (𝒓𝑻)

Diagnostics computed on uncentered & level-disaggregated predictor 
sets: 

 VIF 

 Condition number (𝜅)

31



Data set #1

Predictor set Correlation matrix VIFs Condition numbers (𝜿𝒔)

Disaggregated

𝑥1𝑖        𝑥2𝑖       𝑥3𝑖       𝑥1.𝑗        𝑥2.𝑗        𝑥3.𝑗

𝑥1𝑖     1   

𝑥2𝑖   -0.023    1 

𝑥3𝑖  0.041    0.021    1 

𝑥1.𝑗   0           0           0          1 

𝑥2.𝑗 0           0           0         -0.095     1 

𝑥3.𝑗   0           0           0         -0.016     0.112     1

𝑥1𝑖: 1.002

𝑥2𝑖: 1.001

𝑥3𝑖: 1.002

𝑥1.𝑗: 1.009

𝑥2.𝑗: 1.022

𝑥3.𝑗: 1.013

Level 1: 1.051

Level 2: 1.158

Uncentered

𝑥1𝑖𝑗      𝑥2𝑖𝑗     𝑥3𝑖𝑗

𝑥1𝑖𝑗   1 

𝑥2𝑖𝑗  -0.031  1 

𝑥3𝑖𝑗   0.036  0.030 1

𝑥1𝑖𝑗: 1.002

𝑥2𝑖𝑗: 1.002

𝑥2𝑖𝑗: 1.002

1.053

𝑟𝑊 = 0, 𝑟𝐵 = 0, ICC𝑥1𝑖𝑗
= ICC𝑥2𝑖𝑗

= 0.25
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Data set #2

Predictor set Correlation matrix VIFs Condition numbers (𝜿𝒔)

Disaggregated

𝑥1𝑖        𝑥2𝑖       𝑥3𝑖        𝑥1.𝑗         𝑥2.𝑗         𝑥3.𝑗

𝑥1𝑖     1   

𝑥2𝑖    0.720 1 

𝑥3𝑖  0.083    0.085    1 

𝑥1.𝑗   0           0           0          1 

𝑥2.𝑗  0           0           0         -0.905     1 

𝑥3.𝑗    0           0           0         -0.036     -0.086    1

𝑥1𝑖: 2.080

𝑥2𝑖 : 2.081

𝑥3𝑖 : 1.008

𝑥1.𝑗: 5.959

𝑥2.𝑗: 5.995

𝑥3.𝑗: 1.085

Level 1: 2.494

Level 2: 4.687

Uncentered

𝑥1𝑖𝑗      𝑥2𝑖𝑗     𝑥3𝑖𝑗

𝑥1𝑖𝑗   1 

𝑥2𝑖𝑗   0.509  1 

𝑥3𝑖𝑗   0.066  0.060  1

𝑥1𝑖𝑗: 1.353

𝑥2𝑖𝑗: 1.352

𝑥2𝑖𝑗: 1.005

1.763

𝑟𝑊 = 0.7, 𝑟𝐵 = –0.9, ICC𝑥1𝑖𝑗
= ICC𝑥2𝑖𝑗

= 0.25
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Data set #3

Predictor set Correlation matrix VIFs Condition numbers (𝜿𝒔)

Disaggregated

𝑥1𝑖        𝑥2𝑖       𝑥3𝑖        𝑥1.𝑗         𝑥2.𝑗         𝑥3.𝑗

𝑥1𝑖     1   

𝑥2𝑖     0.254 1 

𝑥3𝑖  0.074    0.048    1 

𝑥1.𝑗   0           0           0          1 

𝑥2.𝑗  0           0           0          0.955     1 

𝑥3.𝑗    0           0           0          0.309     0.316    1

𝑥1𝑖: 1.073

𝑥2𝑖 : 1.070

𝑥3𝑖 : 1.006

𝑥1.𝑗: 11.328

𝑥2.𝑗: 11.380

𝑥3.𝑗: 1.111

Level 1: 1.311

Level 2: 6.864

Uncentered

𝑥1𝑖𝑗      𝑥2𝑖𝑗     𝑥3𝑖𝑗

𝑥1𝑖𝑗   1 

𝑥2𝑖𝑗   0.073  1 

𝑥3𝑖𝑗   0.120  0.046  1

𝑥1𝑖𝑗: 1.019

𝑥2𝑖𝑗: 1.007

𝑥2𝑖𝑗: 1.016

1.153

𝑟𝑊 = 0.25, 𝑟𝐵 = 0.95, ICC𝑥1𝑖𝑗
= 0.8, ICC𝑥2𝑖𝑗

= 0.01
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Key takeaways

 Collinearity diagnostics applied to uncentered predictors are 
misleading and arbitrary

 Level-specific collinearity influences bias and precision in all 
models investigated here (even the fully conflated model!) 

 In all cases, level-specific collinearity must be diagnosed in 
order to understand how estimation has been impacted
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Conclusions

 To ensure that point estimates will not be biased due to 
collinearity, disaggregate all predictors! 

 Depending on data conditions, expect that collinearity may 
introduce bias into SEs and/or random effect estimates

 Potential avenues for mitigation…

 Larger ICC𝑦

 Smaller predictor ICCs 

 Limitations 
 Many design factors were held constant 
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Unanswered 
questions

 Diagnosing collinearity in multilevel data
 Accepted cutoffs? 

 Performance?

 Optimal strategies for remedying collinearity problems in 
multilevel data

 Removing the predictor(s) with strongest collinearity? 

 Multilevel PCA? 

 Multilevel factor analysis? 
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