Understanding the consequences of collinearity for multilevel models: The importance of disaggregation across levels

Haley E. Yaremych

Kristopher J. Preacher

Department of Psychology & Human Development, Vanderbilt University

VANDERBILT UNIVERSITY

Outline

Background

- Analytics
- Simulation
- Diagnostics
- Conclusions

Level-specific effects in multilevel data

The fully disaggregated model The fully disaggregated model:

$$y_{ij} = \beta_{0j} + \beta_{1j} \left(x_{1ij} - \overline{x}_{1.j} \right) + e_{ij}$$
$$\beta_{0j} = \gamma_{00} + \gamma_{01} \overline{x}_{1.j} + u_{0j}$$
$$\beta_{1j} = \gamma_{10} + u_{1j}$$

Reduced form:

$$y_{ij} = \gamma_{00} + \gamma_{10} \left(x_{1ij} - \overline{x}_{1.j} \right) + \gamma_{01} \overline{x}_{1.j} + u_{0j} + u_{1j} \left(x_{1ij} - \overline{x}_{1.j} \right) + e_{ij}$$

$$\begin{bmatrix} u_{0j} \\ u_{1j} \end{bmatrix} \sim MVN \begin{bmatrix} \tau_{00} \\ \tau_{01} & \tau_{11} \end{bmatrix}$$
$$e_{ii} \sim N(0, \sigma_e^2)$$

The conflated model

The conflated model:

$$y_{ij} = \beta_{0j} + \beta_{1j} x_{1ij} + e_{ij}$$
$$\beta_{0j} = \gamma_{00} + u_{0j}$$
$$\beta_{1j} = \gamma_{10} + u_{1j}$$

Reduced form:

 $y_{ij} = \gamma_{00} + \gamma_{10} x_{1ij} + u_{0j} + u_{1j} x_{1ij} + e_{ij}$

$$\begin{bmatrix} u_{0j} \\ u_{1j} \end{bmatrix} \sim MVN \begin{bmatrix} \tau_{00} \\ \tau_{01} & \tau_{11} \end{bmatrix}$$
$$e_{ij} \sim N(0, \sigma_e^2)$$

Collinearity

Consequences for single-level regression:

- Very large SEs (reduced power)
- Unstable point estimates
- Substantively impossible point estimates

Collinearity in multilevel data

- Consensus across (very few) studies:
 - Enlarged *SE*s of fixed effect estimates
 - Larger sample size helps
- Contradictory results across (very few) studies:
 - ICC_y
 - Relative bias in random effect (co)variance estimates
- Many unanswered questions, such as:
 - How do the consequences of collinearity change across different centering specifications (e.g., the conflated vs. the disaggregated model)?

7

Study goals

- *Analytics:* Establish the consequences of collinearity for the conflated model
- *Simulation:* Clarify how the consequences of collinearity change across model specifications and data characteristics
- *Diagnostics:* Demonstrate how collinearity diagnostics are influenced by centering and disaggregation

Outline

- Background
- Analytics
- Simulation
- Diagnostics
- Conclusions

The generalized least squares (GLS) estimator

$$\hat{\beta}_{GLS} = \left\{ \sum_{j=1}^{J} \frac{X_{Bj}^{T} X_{Bj}}{1 + (n_{j} - 1)\rho} + \sum_{j=1}^{J} \frac{X_{Wj}^{T} X_{Wj}}{1 - \rho} \right\}^{-1} \times \left\{ \sum_{j=1}^{J} \frac{X_{Bj}^{T} Y_{j}}{1 + (n_{j} - 1)\rho} + \sum_{j=1}^{J} \frac{X_{Wj}^{T} Y_{j}}{1 - \rho} \right\}$$

- $\hat{\beta}_{GLS}$ = a single conflated slope estimate J = number of clusters n_j = cluster size for cluster j
- ρ = intraclass correlation of y_{ij}
- X_{Bj} = a vector of cluster means for cluster *j*
- X_{W_i} = a vector of cluster mean centered predictors for cluster j

GLS estimator: maximally general form

$$\hat{\boldsymbol{\beta}}_{\text{GLS}} = \left\{ \sum_{j=1}^{J} \left[\frac{\left(1 + \left(n_{j} - 1\right)\rho\right)^{-1} n_{j}}{\left(1 + \left(n_{j} - 1\right)\rho\right)^{-1} n_{j} \overline{\mathbf{x}}_{j}} \frac{\left(1 + \left(n_{j} - 1\right)\rho\right)^{-1} n_{j} \overline{\mathbf{x}}_{j} \overline{\mathbf{x}}_{j}' + \left(1 - \rho\right)^{-1} \left(\mathbf{X}_{j}' \mathbf{X}_{j} - n_{j} \overline{\mathbf{x}}_{j} \overline{\mathbf{x}}_{j}'\right)} \right] \right\}^{-1} \\ \times \left\{ \sum_{j=1}^{J} \left(\left(1 + \left(n_{j} - 1\right)\rho\right)^{-1} \left[\mathbf{1}_{n_{j}} \mid \mathbf{1}_{n_{j}} \overline{\mathbf{x}}_{j}'\right]^{T} Y_{j} + \left(1 - \rho\right)^{-1} \left[\mathbf{0}_{n_{j}} \mid \mathbf{X}_{j} - \mathbf{1}_{n_{j}} \overline{\mathbf{x}}_{j}'\right]^{T} Y_{j} \right) \right\}$$

 $\hat{\beta}_{GLS}$ = a vector of conflated slope estimates J = number of clusters n_j = cluster size for cluster j ρ = intraclass correlation of y_{ij}

 $\mathbf{1_{n_j}} = n_j \times 1 \text{ column vector of 1's}$ $\mathbf{0_{n_j}} = n_j \times 1 \text{ column vector of 0's}$ $\overline{\mathbf{x}_j} = \text{ column vector of cluster means for cluster } j$ $\mathbf{X_j} = \text{ original data matrix for cluster } j$ $\mathbf{Y_j} = \text{ column vector of outcomes for cluster } j$ The GLS estimator is informed by predictor covariance Muthén (1990):

$$\mathbf{S}_{B} = (J-1)^{-1} \sum_{j=1}^{J} n_{j} \left(\overline{x}_{.j} - \overline{x}_{..} \right) \left(\overline{x}_{.j} - \overline{x}_{..} \right)' \qquad \mathbf{S}_{PW} = (N-J)^{-1} \sum_{j=1}^{J} \sum_{i=1}^{n_{j}} \left(x_{ij} - \overline{x}_{.j} \right) \left(x_{ij} - \overline{x}_{.j} \right)'$$

Expressing components of the maximally general GLS estimator in terms of these quantities:

$$\sum_{j=1}^{J} \left(1 + \left(n_{j} - 1\right)\rho\right)^{-1} n_{j} \overline{\mathbf{x}}_{j} \overline{\mathbf{x}}_{j}' = \left(1 + \left(n - 1\right)\rho\right)^{-1} n \begin{bmatrix} J & \sum_{j=1}^{J} \overline{\mathbf{z}}_{j}' \\ \sum_{j=1}^{J} \overline{\mathbf{z}}_{j} & (J - 1)n^{-1} \mathbf{S}_{B} \end{bmatrix}$$

$$\sum_{j=1}^{J} (1-\rho)^{-1} \left(\mathbf{X}_{j}' \mathbf{X}_{j} - n_{j} \overline{\mathbf{x}}_{j} \overline{\mathbf{x}}_{j}' \right) = (1-\rho)^{-1} \begin{bmatrix} 0 & \sum_{j=1}^{J} \left(\mathbf{Z}_{j} - n \overline{\mathbf{z}}_{j}' \right) \\ \sum_{j=1}^{J} \left(\mathbf{Z}_{j}' - n \overline{\mathbf{z}}_{j} \right) & (N-J) \mathbf{S}_{PW} \end{bmatrix}$$

Key takeaways

- Predictor covariance (a.k.a. predictor collinearity) systematically influences slope estimates in the conflated multilevel model
- Departure from single-level regression

Outline

- Background
- Analytics
- Simulation
- Diagnostics
- Conclusions

Simulation study design

Held constant:

- Three continuous level-1 predictors: $x_{1ij}, x_{2ij}, x_{3ij}$
- Continuous level-1 outcome: *y*_{*ij*}
- Within- and between-cluster effects
- Total $var(y_{ij})$
- Sample size at each level

Varied:

r_W : within-cluster $cor(x_{1ij}, x_{2ij})$	-0.9, -0.8, -0.7, -0.6, 0, 0.6, 0.7, 0.8, 0.9
r_B : between-cluster $cor(x_{1ij}, x_{2ij})$	-0.9, -0.8, -0.7, -0.6, 0, 0.6, 0.7, 0.8, 0.9
ICC _y	0.05, 0.3
$ICC_{x_{1ij}}, ICC_{x_{2ij}}$	0.05, 0.3

Simulation study design

- Conflated model
 - Level 1: $x_{1ij}, x_{2ij}, x_{3ij}$
- Fully disaggregated model
 - Level 1: $(x_{1ij} \bar{x}_{1.j}), (x_{2ij} \bar{x}_{2.j}), (x_{3ij} \bar{x}_{3.j})$
 - Level 2: $\bar{x}_{1.j}, x_{2.j}, x_{3.j}$
- Partially disaggregated model • Level 1: x_{1ij} , $(x_{2ij} - \overline{x}_{2.j})$, $(x_{3ij} - \overline{x}_{3.j})$
 - Level 2: $x_{2.j}, x_{3.j}$
- Outcomes:
 - Fixed effect estimates
 - Relative bias in the fixed effect estimate *SE*s
 - Relative bias in the random effect (co)variance estimates

Results: conflated model

- Both r_W and r_B influenced fixed effect estimates
- Fixed effect estimates were most strongly influenced when...
 - ICC_y was small
 - $ICC_{x_{1ij}}$ and $ICC_{x_{2ij}}$ were large
- Did not examine *SE*s or random effect (co)variance estimates due to problematic nature of fixed effect estimates

- Conflated slope of x_{1ij} :
 - Not affected
- Within-cluster slope of x_{2ij} :
 - $r_W \times ICC_y$
 - $r_W \times$ predictor ICCs
- Between-cluster slope of x_{2ij} :
 - $r_B \times$ predictor ICCs

Estimated within-cluster slope of x_{2ij}

Estimated within-cluster slope of x_{2ij}

Estimated between-cluster slope of x_{2ij}

Takeaways from the partially disaggregated model

- When predictors are collinear and some are left uncentered whereas other, likely the most substantively important, predictors are disaggregated....
- That disaggregation will *not* always yield unbiased estimates!

• Fixed effect estimates

Unbiased in all conditions

• Relative bias in the *SE*s of fixed effect estimates

• Within-cluster estimates: main effect of r_W

Relative bias in the random effect (co)variance estimates
r_W interacted with all other design factors

Standard error of the withincluster effect of x_{1ij}

Random slope variance estimates

Relative bias in au_{11}

Random slope variance estimates

Relative bias in au_{21}

Results: fully disaggregated model

Random slope covariance estimates

Takeaways from the fully disaggregated model

- Results mimicked single-level regression
 - Point estimates unaffected
 - Standard errors enlarged
- Standard errors:
 - True increase in variability
 - AND upward bias in estimated SEs
- Random effect (co)variance estimates:
 - Influenced by r_W
 - Often extremely biased

Outline

- Background
- Analytics
- Simulation
- Diagnostics
- Conclusions

Collinearity diagnostics

- Variance Inflation Factor (VIF)
 - Comes from the formula for the variance of a slope estimate (single-level regression)
 - Interpretation: multiplicative factor by which $var(\beta_i)$ is increased due to collinearity in the data set

•
$$var(\beta_i) = \frac{var_y}{var_{x_i}} \left(\frac{1-R_y^2}{n-k-1}\right) \left(\frac{1}{1-R_{x_i}^2}\right)$$

- Condition number (κ)
 - Do an eigen-decomposition of X'X and obtain eigenvalues $\lambda_1, \lambda_2, ..., \lambda_k$

$$\kappa = \sqrt{\frac{\lambda_{max}}{\lambda_{min}}}$$

• Interpretation: "sensitivity" of regression results to small changes in the data set

Simulated data

Held constant:

- Three continuous level-1 predictors: $x_{1ij}, x_{2ij}, x_{3ij}$
- x_{3ij} was minimally correlated with x_{1ij} and x_{2ij}

Varied:

- Within- and between-cluster correlation of x_{1ij} and x_{2ij} (r_W , r_B)
- $ICC_{x_{1ij}}$ and $ICC_{x_{2ij}}$
- These factors incidentally vary the "total" correlation of x_{1ij} and x_{2ij} (r_T)

Diagnostics computed on uncentered & level-disaggregated predictor sets:

- VIF
- Condition number (κ)

Data set #1

Predictor set	Correlation matrix	VIFs	Condition numbers (<i>ks</i>)
Disaggregated	x_{1i} x_{2i} x_{3i} $x_{1.j}$ $x_{2.j}$ $x_{3.j}$	<i>x</i> _{1<i>i</i>} : 1.002	Level 1: 1.051
	x_{1i} 1	<i>x</i> _{2<i>i</i>} : 1.001	Level 2: 1.158
	<i>x</i> _{2<i>i</i>} -0.023 1	<i>x</i> _{3<i>i</i>} : 1.002	
	x_{3i} 0.041 0.021 1	<i>x</i> _{1.<i>j</i>} : 1.009	
	$x_{1.j} \ 0 \ 0 \ 0 \ 1$	<i>x</i> _{2.<i>j</i>} : 1.022	
	x _{2.j} 0 0 0 -0.095 1	<i>x</i> _{3.<i>j</i>} : 1.013	
	x _{3.j} 0 0 0 -0.016 0.112 1		
Uncentered	x_{1ij} x_{2ij} x_{3ij}	<i>x</i> _{1<i>ij</i>} : 1.002	1.053
	x_{1ij} 1	x_{2ij} : 1.002	
	<i>x</i> _{2<i>ij</i>} -0.031 1	<i>x</i> _{2<i>ij</i>} : 1.002	
	x_{3ij} 0.036 0.030 1		

 $r_W = 0, r_B = 0, ICC_{x_{1ij}} = ICC_{x_{2ij}} = 0.25$

Data set #2

$r_W = 0.7, r_B = -0.9, ICC_{x_{1ij}} = ICC_{x_{2ij}} = 0.25$					
Predictor set	Correlation matrix	VIFs	Condition numbers (<i>ks</i>)		
Disaggregated	x_{1i} x_{2i} x_{3i} $x_{1.j}$ $x_{2.j}$ $x_{3.j}$	<i>x</i> _{1<i>i</i>} : 2.080	Level 1: 2.494		
	x_{1i} 1	<i>x</i> _{2<i>i</i>} : 2.081	Level 2: 4.687		
	<i>x</i> _{2<i>i</i>} 0.720 1	<i>x</i> _{3<i>i</i>} : 1.008			
	x_{3i} 0.083 0.085 1	<i>x</i> _{1.<i>j</i>} : 5.959			
	$x_{1.j} \ 0 \ 0 \ 0 \ 1$	<i>x</i> _{2.<i>j</i>} : 5.995			
	x _{2.j} 0 0 0 - 0.905 1	<i>x</i> _{3.<i>j</i>} : 1.085			
	<i>x</i> _{3.<i>j</i>} 0 0 0 -0.036 -0.086 1				
Uncentered	x_{1ij} x_{2ij} x_{3ij}	x_{1ij} : 1.353	1.763		
	x_{1ij} 1	x_{2ij} : 1.352			
	<i>x</i> _{2<i>ij</i>} 0.509 1	x_{2ij} : 1.005			
	x_{3ij} 0.066 0.060 1				

Data set #3

Predictor set	Correlation matrix	VIFs	Condition numbers (<i>ks</i>)
Disaggregated	x_{1i} x_{2i} x_{3i} $x_{1.j}$ $x_{2.j}$ $x_{3.j}$	<i>x</i> _{1<i>i</i>} : 1.073	Level 1: 1.311
	<i>x</i> _{1<i>i</i>} 1	x_{2i} : 1.070	Level 2: 6.864
	<i>x</i> _{2<i>i</i>} 0.254 1	x_{3i} : 1.006	
	x_{3i} 0.074 0.048 1	<i>x</i> _{1.<i>j</i>} : 11.328	
	$x_{1.j} \ 0 \ 0 \ 0 \ 1$	<i>x</i> _{2.<i>j</i>} : 11.380	
	<i>x</i> _{2.<i>j</i>} 0 0 0 0.955 1	<i>x</i> _{3.<i>j</i>} : 1.111	
	x _{3.j} 0 0 0 0.309 0.316 1		
Uncentered	x_{1ij} x_{2ij} x_{3ij}	x_{1ij} : 1.019	1.153
	x_{1ij} 1	x_{2ij} : 1.007	
	<i>x</i> _{2<i>ij</i>} 0.073 1	<i>x</i> _{2<i>ij</i>} : 1.016	
	x _{3ij} 0.120 0.046 1		

 $r_W = 0.25, r_B = 0.95, ICC_{x_{1ij}} = 0.8, ICC_{x_{2ij}} = 0.01$

Key takeaways

- Collinearity diagnostics applied to uncentered predictors are misleading and arbitrary
- Level-specific collinearity influences bias and precision in all models investigated here (*even the fully conflated model*!)
- In all cases, level-specific collinearity must be diagnosed in order to understand how estimation has been impacted

Outline

- Background
- Analytics
- Simulation
- Diagnostics
- Conclusions

Conclusions

• To ensure that point estimates will not be biased due to collinearity, *disaggregate all predictors!*

- Depending on data conditions, expect that collinearity may introduce bias into *SE*s and/or random effect estimates
 - Potential avenues for mitigation...
 - Larger ICC_y
 - Smaller predictor ICCs
- Limitations
 - Many design factors were held constant

Unanswered questions

- Diagnosing collinearity in multilevel data
 - Accepted cutoffs?
 - Performance?
- Optimal strategies for remedying collinearity problems in multilevel data
 - Removing the predictor(s) with strongest collinearity?
 - Multilevel PCA?
 - Multilevel factor analysis?

References

- Clark, P. C. (2013). The effects of multicollinearity in multilevel models (Doctoral dissertation). Wright State University.
- Hendrickx, J. (2018). *Collinearity in mixed models*. Paper presented at PHUSE EU Connect Conference, Frankfurt, Germany.
- Scott, A. J., & Holt, D. (1982). The effect of two-stage sampling on ordinary least squares methods. *Journal of the American Statistical Association*, 77(380), 848-854.
- Shieh, Y. Y., & Fouladi, R. T. (2003). The effect of multicollinearity on multilevel modeling parameter estimates and standard errors. *Educational and Psychological Measurement*, *63*(6), 951-985.
- Stinnett, S. S. (1994). *Collinearity in mixed models*. (Doctoral dissertation). The University of North Carolina at Chapel Hill.
- Yu, H., Jiang, S., & Land, K. C. (2015). Multicollinearity in hierarchical linear models. *Social Science Research*, 53, 118-136.

Thank you!

haley.e.yaremych@vanderbilt.edu

VANDERBILT UNIVERSITY

