Methods for Intersectional Measurement Invariance Testing

Dakota W. Cintron Cornell University

Aims

Provide an overview on using three methods for performing *intersectional* measurement invariance testing:

1) alignment
method2) mixture
multiple group
factor analysis3) moderated
nonlinear
factor analysis

Demonstrate methods with an empirical example

Measurement Invariance

Measurement invariance assesses the psychometric equivalence of a construct across groups or across time

When psychological tests are used in diverse populations, it is assumed that a given test score represents the same level of the underlying construct (e.g., achievement or depression) across groups

Measurement noninvariance suggests that a construct has a different structure or meaning to different groups or on different measurement occasions in the same group, and so the construct cannot be meaningfully tested or construed across groups or across tim

Intersectionality Theory

Kimberlé Crenshaw (1989) coined the idea when arguing for an intersectional legal framework for examining how race and gender interact to shape Black women's employment experiences and exposure to discrimination

In psychological and epidemiological research, intersectionality theory is used as a framework for understanding how multiple social or political identities (e.g., gender, age, or race) intersect to affect an individual's lived experience and health outcomes as opposed to considering each factor disparately

May require many potential intersectional subgroups

Bešić, 2020

Problem

Assessing measurement invariance is crucial to help determine whether group differences in a latent construct (e.g., depression) are meaningful or not

Traditionally, the evaluation of measurement invariance involves one demographic variable (e.g., gender) with a few subgroups (male, female)

Intersectional measurement invariance testing requires evaluating the psychometric properties of a scale across potentially many social and political identities

Simple Example of Ignoring Intersectionality

Traditional Measurement Invariance Testing

- Measurement invariance (MI) testing (Meredith, 1993) involves comparing configural, metric, and scalar models using multiple-group confirmatory factor analysis (CFA)
 - Configural invariance implies the same factor structure across groups
 - Metric invariance implies the factor loadings are invariant across groups
 - Scalar invariance implies that the factor loadings and thresholds (item intercepts) are invariant across groups
 - Scalar invariance is often considered a requirement for comparing factor means between groups
- Configural, metric, and invariance tests are generally conducted using a sequential constraint imposition or forward approach (see Horn & McArdle, 1992)
 - Compare the model fit of configural to metric, and then metric to scalar

Challenges with Traditional MI Testing

The evaluation of MI is generally limited to comparing independent groups defined by a single demographic variable Men

Woman

Scalar

Intersectional Measurement Invariance

- It is important to consider intersectionality theory for measurement invariance testing because it is possible that the intersection of individuals identities may shape their response behavior
- Intersectional measurement invariance testing requires evaluating the psychometric properties of a scale across potentially many social and political identities (Cintron et al., 2023)
 - The intersection of race (White, Hispanic, Black, and Asian), gender (male, female), education (high school, bachelor's degree, graduate), and economic advantage (disadvantaged, advantaged) would result in 4x 2 x 3 x 2 = 48 intersectional subgroups.
- May require many potential subgroups and thus requires measurement invariance testing methods that can handle many groups
 - Alignment method
 - Mixture multiple-group factor analysis
 - Moderated nonlinear factor analysis

Alignment Method

- Asparouhov and Muthén (2014) developed the alignment method as an alternative to traditional multiple group CFA approaches for data structures with many groups
 - Can accommodate two or more groups easily
- The alignment method aims to make unbiased factor mean comparisons by producing a factor model with factor loadings and item intercepts that are as close to equivalent as possible across groups
 - In other words, the alignment approach aims to minimize measurement non-invariance
- Not necessarily a measurement invariance testing procedure but rather an *optimization approach* for finding the optimal amount of measurement invariance
 - See Luong and Flake (2021) and Asparouhov & Muthen (2014) for more details
 - Assumes configural invariance
- We implement the alignment method in *Mplus*, see also *sirt* package in R

Mixture Multiple Group Factor Analysis

- With many groups, it is unlikely that all groups have evidence of scalar invariance but equally unlikely that each group has its own unique set of parameters (loadings, intercepts)
- Mixture multigroup factor analysis (MMG-FA; De Roover, 2021) clusters groups according to a specific level of measurement invariance
 - Groups with scalar invariance are obtained by imposing cluster-specific intercepts and invariant loadings whereas unique variances, factor means, and factor (co)variances can differ between groups
 - For each cluster where scalar invariance holds, latent mean comparisons may be made
 - Uses three methods to choose the number of clusters BIC, scree rations, and convex hull of the likelihood
 - Assumes configural invariance
- We implement MMG-FA using the *mixmgfa* package in R

Moderated Nonlinear Factor Analysis (MNLFA)

- Measurement invariance is assessed through parameter moderation in a singlegroup CFA model (Curran et al., 2014)
 - Can handle the assessment of measurement invariance across multiple continuous and categorical background variables
- A CFA model is estimated in which background variables are included as moderated variables
 - All parameters may be moderated by the background variables
- Nonzero effects of the covariates on the parameter's indicative of violations of invariance
 - Linear and nonlinear relationships possible
- Assumes configural invariance
- We implement MNLFA in *Mplus* using the R package *aMNLFA*

Simulation Example

Two Conditions

- Simulate data for 8 groups
- Invariant model

model generating functions
invariant_model <- 'f1=~x1+.6*x2+.7*x3+.5*x4 + 0.9*x5 + 0.8*x6 + 0.6*x7
f2=~x8+.5*x9+.8*x10+.9*x11 + 0.7*x12 + 0.6*x13 + 0.7*x14
f1 ~~ 0.35*f2'</pre>

- Noninvariant model
 - Medium-large factor loading noninvariance for items 3, 7, and 13 for groups 6-8
 - Medium item intercept noninvariance for items 4, 5, and 14 for groups 6-8
 - Constant of 0.5 to items

noninvariant_model <- 'f1=x1+.6*x2+.35*x3+.5*x4 + 0.9*x5 + 0.8*x6 + 0.25*x7f2=x8+.5*x9+.8*x10+.9*x11 + 0.7*x12 + 0.25*x13 + 0.7*x14f1 $\sim 0.35*f2$ '

Results: Traditional MG-CFA (Invariant)

Chi-Squared Difference Test

fit configural	Df	AI	C	BIC	Chisq	Chisq	diff		RMSEA	Df	diff	Pr(>	Chisq)
TTL_Contigurat	008	1/1/0	64 I/	3949	602.65								
fit_metric	692	17170)2 17	3338	688.39	85	.733	0.00	064239		84		0.4269
fit_scalar	776	17163	32 1 7	2740	786.38	97	.988	0.01	L82498		84		0.1411
				1 54	Tradit a							u.	
#######################################	F####	####	Mode			es ####	####	####	*#####	Ŧ₩₩₩	#####	Ŧ	
	C	hisq	df	pvalu	e rmse	a cf	i	tli	srmr			aic	
fit_configural	602.	655†	608	. 55	4.000	† 1.000	† 1.	001†	.029†	171	784.2	219	
fit_metric	688.	388	692	.53	2.000	† 1.000	† 1.	000	.036	171	701.9	952	
fit_scalar	786.	376	776	. 39	0.005	0.999	0.	999	.038	171	631.9	940†	
		b	ic										
fit_configural	1739	49.37	2										
fit_metric	1733	38.40)5										
fit scalar	1727	39.69	93†										

Results Alignment (Invariant)

Intercept	s/Thr	'es	sho	\mathbf{pl}	ls				
X1		1	2	3	4	5	6	7	8
X2		1	2	3	4	5	6	7	8
X 3		1	2	3	4	5	6	7	8
X4		1	2	3	4	5	6	7	8
X 5		1	2	3	4	5	6	7	8
X 6		1	2	3	4	5	6	7	8
X7		1	2	3	4	5	6	7	8
X8		1	2	3	4	5	6	7	8
X 9		1	2	3	4	5	6	7	8
X10		1	2	3	4	5	6	7	8
X11		1	2	3	4	5	6	7	8
X12		1	2	3	4	5	6	7	8
X13		1	2	3	4	5	6	7	8
X14		1	2	3	4	5	6	7	8
Loadings	for F	1							
X1		1	2	3	4	5	6	7	8
X2		1	2	3	4	5	6	7	8
X 3		1	2	3	4	5	6	7	8
X4		1	2	3	4	5	6	7	8
X 5		1	2	3	4	5	6	7	8
X 6		1	2	3	4	5	6	7	8
X7		1	2	3	4	5	6	7	8
Loadings	for F	2							
X8		1	2	3	4	5	6	7	8
X 9		1	2	3	4	5	6	7	8
X10		1	2	3	4	5	6	7	8
X11		1	2	3	4	5	6	7	8
X12		1	2	3	4	5	6	7	8
X13		1	2	3	4	5	6	7	8

Results: MMG-FA (Invariant)

	Factor_1	Factor_2
x1	1.0230432	0.0000000
x2	0.6031932	0.0000000
x 3	0.6996908	0.0000000
x 4	0.5208666	0.0000000
x5	0.9350079	0.0000000
x 6	0.8018651	0.0000000
x 7	0.6276809	0.0000000
x 8	0.0000000	0.9756335
x 9	0.0000000	0.4732969
x1 0	0.0000000	0.7916525
x11	0.0000000	0.8731683
x1 2	0.0000000	0.7132992
x1 3	0.0000000	0.5636934
x1 4	0.000000	0.7052766

Results: MNLFA (Invariant)

Results: Traditional MG-CFA (Noninvariant)

Chi-Squared Difference Test

fit configural	Df AIC	BIC	Chisq	Chisq d [.]	iff F	RMSEA D	of diff	Pr(>Chisq)
fit_metric	692 171629	173265	917.81	317	.96 0.07	4635	84	< 2.2e-16
fit_scalar	776 172099	173206 1	555.75	637	.94 0.11	4844	84	< 2.2e-16
fit_configural								
fit_metric	* * *							
fit_scalar	nic nic nic							
Signif. codes:	0 '***' 0.	001'**'	0.01'	*' 0.05	·.' 0.1	''1		
#################	######## Mo	del Fit	Indices	######	########	+######	+#######	ŧ
	chisa	df pvalu	e rmsea	cfi	tli	srmr		aic
fit_configural	599.850† 6	08 .58	5.000†	1.000†	1.001†	.029†	171478.	832†
fit_metric	917.808 6	92 .00	0.026	.980	.979	.050	171628.	.790
fit_scalar	1555.752 7	76 .00	0.045	.930	.934	.059	172098.	734
	bic							
fit_configural	173643.985							
fit_metric	173265.243							
fit_scalar	173206.486†							
#################	#### Differe	nces in	Fit Ind	ices ###	########	+######	+#######	ŧ
		df rms	ea cf	i tl	i srmr	ai	c	bic
fit_metric - f	it_configura	1 84 0.0	26 -0.0	2 -0.022	2 0.021	149.95	8 -378.	742
fit_scalar - f	it_metric	84 0.0	19 -0.0	5 -0.044	4 0.009	469.94	4 -58.	756

Results: Alignment (Noninvariant)

Intercept	ts/Three	sho	510	ds				
X1	1	2	3	4	5	67	8	
X2	1	2	3	4	5	67	8	
X 3	1	2	3	4	5	67	8	
X4	1	2	3	4	5	(6)	(7)	(8)
X 5	1	2	3	4	5	(6)	(7)	(8)
X 6	1	2	3	4	5	67	8	
X7	1	2	3	4	5	67	8	
X8	1	2	3	4	5	67	8	
X 9	1	2	3	4	5	67	8	
X10	1	2	3	4	5	67	8	
X11	1	2	3	4	5	67	8	
X12	1	2	3	4	5	67	8	
X13	1	2	3	4	5	67	8	
X14	1	2	3	4	5	(6)	(7)	(8)
Loadings	for F1							
X1	1	2	3	4	5	67	8	
X2	1	2	3	4	5	67	8	
X 3	1	2	3	4	5	(6)	(7)	(8)
X4	1	2	3	4	5	67	8	
X 5	1	2	3	4	5	67	8	
X 6	1	2	3	4	5	67	8	
X7	1	2	3	4	5	(6)	(7)	(8)
Loadings	for F2							
X8	1	2	3	4	5	67	8	
X 9	1	2	3	4	5	67	8	
X10	1	2	3	4	5	67	8	
X11	1	2	3	4	5	67	8	
X12	1	2	3	4	5	67	8	
X13	1	2	3	4	5	(6)	(7)	(8)
X14	1	2	3	4	5	67	8	

Results MMG-FA (Noninvariant)

	nr	of	clusters	loglik	nrpars	BIC_N	BIC_G	screeratios	convergence
[1,]			1	-85948.70	176	173357.2	172263.4	NA	- 1
[2,]			2	-85658.67	201	172984.4	171735.3	2.384504	1
[3,]			3	-85537.04	226	172948.5	171544.0	1.565931	1
[4,]			4	-85459.37	251	173000.5	171440.7	5.143030	1
[5,]			5	-85444.26	276	173177.7	171462.5	1.046035	1
[6,]			6	-85429.82	301	173356.2	171485.6	NA	1

Model selection plots for mixture multigroup factor analyses

number of clusters

number of free parameters

Scree ratio is max at 2 cluster solution. Elbow at 3 clusters. 3 cluster solution nearly correct.

	Cluster_1 Cluster_	_2
1	0	1
2	0	1
3	1	0
4	0	1
5	0	1
6	0	1
7	0	1
8	0	1

	Cluster_1	Cluster_2	Cluster_3	
1	0	0	1	
2	0	0	1	
3	0	1	0	
4	0	0	1	
5	0	0	1	
6	1	0	0	
7	1	0	0	
8	1	0	0	

Results MMG-FA (Noninvariant)

		Cluster	1			Cluster 2	2				Cluster	3	
	x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14	Factor_1 1.0369532 0.6088257 0.3517281 0.4799559 0.9026586 0.8027759 0.2480157 0.0000000 0.0000000 0.0000000 0.0000000	Facto 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0019 0.4802 0.7449 0.8426 0.7298 0.2588 0.7248	or_2 0000 0000 0000 0000 0000 0000 5064 2230 9974 6073 8424 8983 8126	x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14	Factor_1 0.9740124 0.5517547 0.7418591 0.4323821 0.9635197 0.6868613 0.5924956 0.000000 0.000000 0.000000 0.000000 0.000000	Fa 0.00 0.00 0.00 0.00 0.00 1.00 0.4 0.8 0.8 0.6 0.5 0.5 0.7	ctor_2 000000 000000 000000 000000 000000 0000		x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14	Factor_1 1.0324087 0.6102738 0.6831400 0.5456828 0.9480776 0.8213167 0.6458287 0.000000 0.000000 0.000000 0.000000 0.000000	Factor_2 0.0000000 0.0000000 0.0000000 0.0000000	
		x1	x2		x3		x4		X	5	x6	x7	x8
Cluster_1 (0.022334	40 -0.0557	73626	0.0072	298989	-0.047792	80 0	.00749	36387	7 -0	.04221381	-0.04131316	-0.04580363
Cluster_2 (0.029963	339 0.4737	73371	0.6039	915674	0.517003	38 0	.00370	79379	9 -0	.05787138	-0.05820922	-0.13595281
Cluster_3 (0.060250	-0.017	37046 -	-0.0074	499078	-0.060764	66 0	.00043	49774	4 -0	.03590530	0.02564286	-0.07981347
_		x9	x1 0		x11	X	12		x13		x14		
Cluster_1 -	-0.02331	.586 -0.067	710739	0.011	L81938	0.129761	22	0.1162	6914	0.3	11049842		
Cluster_2	0.02011	.012 0.481	L28418	0.641	L96924	0.465281	66 -	0.0720	3630	-0.	06958884		
Cluster_3	0.01568	385 -0.048	394289	-0.015	508219	-0.075085	53 -	0.0111	7446	-0.	04488238		

Recall Noninvariant Model

• Noninvariant model

- medium-large factor loading noninvariance for items 3, 7, and 13 for groups 6-8
- Medium item intercept noninvariance for items 4, 5, and 14 for groups 6-8
 - Constant of 0.5 to items

noninvariant_model <- 'f1=~x1+.6*x2+<mark>.35*x3</mark>+.5*x4 + 0.9*x5 + 0.8*x6 + 0.25*x7 f2=~x8+.5*x9+.8*x10+.9*x11 + 0.7*x12 + 0.25*x13 + 0.7*x14 f1 ~~ 0.35*f2'

Results: MNLFA (Noninvariant)

Factor 1

Results: MNLFA (Noninvariant)

Factor 2

All intercept effects with unadjusted p. values under .05

Empirical Demonstration

Data

- Analyze the eight-item Patient Health Questionnaire depression instrument (PHQ-8) in a sample of 30,215 American adults in the United States from the 2019 National Health Interview Survey (NHIS)
- Examine the MI of the PHQ-8 depression instrument across 16 intersectional subgroups defined at the intersection of
 - age (under 52, 52 and older),
 - gender (male, female),
 - race (Black, non-Black), and
 - education (no bachelor's degree, with bachelor's degree)

Table 1	ht Outrien (BIIO) demonstration in the second in the
Item	Item Text
	Over the last two weeks, how often have you been bothered by
PHQ-1	Little interest or pleasure in doing things?
PHQ-2	Feeling down, depressed, or hopeless?
PHQ-3	Trouble falling or staying asleep, or sleeping too much?
PHQ-4	Feeling tired or having little energy?
PHQ-5	Poor appetite or overeating?
PHQ-6	Feeling bad about yourself, or that you are a failure, or have let yourself or your family down?
PHQ-7	Trouble concentrating on things, such as reading the newspaper or watching television?
PHQ-8	Moving or speaking so slowly that other people could have noticed? Or the opposite, being so fidgety or restless that you have been moving around a lot more than usual?
<i>Note.</i> The read	sponse options for each item were not at all (1), several days (2), more than half the days (3), ery day (4).

8-item Patient Health Questionnaire (PHQ)

Intersectional Subgroups

- 16 intersectional groups
- 52+ Black males with no college degree (smallest subgroup)
- 52+ Non-Black females with no college degree (largest subgroup)
- Internal consistency (alpha) relatively high across all groups

Table 1 Intersect	ional group definitions and internal consistencies on PH	IQ-8	
Group Code	Group	Ν	Internal consistency
1	< 52 Black Females with College Degree	464	0.84
2	< 52 Black Females with No College Degree	639	0.87
3	< 52 Black Males with College Degree	294	0.86
4	< 52 Black Males with No College Degree	472	0.86
5	< 52 Non-Black Females with College Degree	3654	0.84
6	< 52 Non-Black Females with No College Degree	2679	0.88
7	< 52 Non-Black Males with College Degree	3119	0.84
8	< 52 Non-Black Males with No College Degree	2817	0.87
9	52+ Black Females with College Degree	380	0.84
10	52+ Black Females with No College Degree	595	0.84
11	52+ Black Males with College Degree	498	0.84
12	52+ Black Males with No College Degree	209	0.87
13	52+ Non-Black Females with College Degree	3717	0.84
14	52+ Non-Black Females with No College Degree	4195	0.84
15	52+ Non-Black Males with College Degree	3199	0.83
16	52+ Non-Black Males with No College Degree	3284	0.84
	Overall	30215	0.85

Note. Internal consistencies measured using Cronbach's alpha.

Note: Traditional MI Testing

- With this data, we were able to establish configural, metric, and salar invariance across all 16 groups using a traditional multiple-group CFA approach for MI
 - May not always be the case with many groups
 - Internal consistency for the PHQ-8 was very high across the groups in this sample

######################################						
Chi-Squared Difference Test						
Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)						
tit_configural 320 5//012 580194 /48/.3 fit metric						
fit_scalar 530 578553 579995 9448.9 885.71 0.063632 105 < 2.2e-16 ***						
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1						
######################################						
chisq df pvalue rmsea cfi tli srmr aic bic						
fit_configural 7487.307 + 320 .000 .110 .917 + .884 .044 + 577011.510 + 580194.142						
fit_metric 8563.163 425 .000 .102 .906 .901 .062 577877.366 580189.747						
fit_scalar 9448.872 530 .000 .096† .897 .913† .065 578553.075 579995.205†						
######################################						
d† rmsea cti tli srmr aic bic						
fit_metric - fit_configural 105 -0.008 -0.011 0.017 0.018 865.855 -4.395						
fit_scalar - fit_metric 105 -0.006 -0.009 0.012 0.003 675.709 -194.542						

Results: AM

- The table notes which item thresholds and loadings are non-invariant in which groups
- The results indicate that, even after alignment, there are many item parameters that remain noninvariant in several of the groups
- Overall, we can see that only 5% of the thresholds (6 out of 128) are non-invariant and 24% of the factor loadings are non-invariant (31 out of 128)
 - Using the 25% rule-of-thumb presented by Muthén and Asparouhov (2014), the results imply trustworthy alignment results

Item intercepts						
Item	Group invariance (non-invariance)	# Non-invariant groups	Invariance index			
PHQ-1	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0	0.750			
PHQ-2	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0	0.848			
PHQ-3	1 2 3 4 5 6 7 8 9 10 11 12 (13) (14) (15) 16	3	0.662			
PHQ-4	1 2 3 4 (5) (6) 7 8 9 10 11 12 13 (14) 15 16	3	0.670			
PHQ-5	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0	0.818			
PHQ-6	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0	0.608			
PHQ-7	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0	0.841			
PHQ-8	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0	0.636			
Factor loadings						
Item	Group (non)-invariance	# Non-invariant groups	Invariance index			
PHQ-1	(1) (2) 3 4 (5) (6) 7 (8) 9 10 11 12 13 14 15 16	5	0.501			
PHQ-2	(1) (2) 3 4 (5) (6) 7 8 9 10 11 12 13 14 15 16	4	0.594			
PHQ-3	1 2 3 4 (5) 6 7 8 9 10 11 12 13 (14) 15 16	2	0.809			
PHQ-4	1 2 3 4 5 (6) 7 8 9 10 11 12 (13) 14 15 16	2	0.681			
PHQ-5	1 2 3 (4) 5 6 (7) (8) 9 10 11 12 13 (14) (15) (16)	6	0.632			
PHQ-6	1 2 3 4 (5) (6) (7) (8) 9 (10) 11 12 13 14 15 (16)	6	0.590			
PHQ-7	1 2 3 4 5 6 7 8 9 10 11 12 (13) 14 15 16	1	0.884			
PHQ-8	(1) 2 3 4 (5) 6 7 8 9 10 11 12 (13) (14) 15 (16)	5	0.341			

DUD I. DUD O

.. ..

Note: The group values correspond to the intersectional coding (see Table 1). The bolded numbers in parentheses refer to the groups that show significant non-invariance for the parameter. The invariance index is R^2 . An R^2 . close to 1 provides evidence that there is complete invariance. Conversely, an R^2 near 0 provides evidence that group mean differences explain little to no variability in item parameters.

Results: MMG-FA Clusters with Scalar Invariance

- The methods to determine the number of clusters indicated that a 1-cluster solution may be likely (i.e., there is evidence of measurement invariance across the 16 intersectional subgroups)
 - There was not clear evidence of an elbow suggesting 1 cluster may be optimal (see De Roover, 2014)
 - Scree ratio largest at 2 clusters
- Examine the two-cluster solution here for demonstration
 - As we will see, the two-cluster solution only captures subtle intercept differences
 - In this scenario, De Roover (2014) suggested that the more parsimonious solution is preferable (here 1-cluster)

Results: MMG-FA Clusters with Scalar Invariance

- Methods for selecting the number of clusters suggested a two-cluster solution (see De Roover, 2001)
- Cluster 1 (38%)
 - 52+ Non-Black Males without a college degree,
 - <52 Non-Black Males with a college degree,
 - 52+ Non-Black Females with a college degree,
 - <52 Non-Black Females without a college degree,
 - <52 Black Males with a college degree
 - <52 Black Females with a college degree
- Cluster 2 (62%)
 - <52 Non-Black Males without college degree,
 - 52+ Non-Black Males with a college degree,
 - <52 Non-Black Females with a college degree,
 - 52+ Non-Black Females without a college degree,
 - <52 Black Males without a college degree,
 - 52+ Black Females with a college degree,
 - 52+ Black Females without a college degree,
 - <52 Black Females without a college degree,
 - 52+ Black Males with a college degree,
 - 52+ Black Males without a college degree

	Cluster 1	Cluster 2	Cluster 1	Cluster 2
	Loadings		Intercepts	
Item 1	0.74	0.74	0.07	-0.00
Item 2	0.78	0.78	0.05	-0.03
Item 3	0.59	0.59	0.02	-0.00
Item 4	0.65	0.64	0.02	-0.04
Item 5	0.63	0.62	-0.02	-0.00
Item 6	0.71	0.72	-0.00	0.02
Item 7	0.63	0.65	-0.00	0.01
Item 8	0.53	0.54	0.01	-0.01

Results: MNLFA

- Explored measurement noninvariance for factor loadings and item intercepts
- Experienced convergence issues
- Computationally intensive to run relative to other methods

Discussion

- The theory of intersectionality has provided new opportunities for the quantitative analysis of data
 - Multilevel analysis of individual heterogeneity and discrimination accuracy (MAIHDA; Evans et al., 2018)
 - Differential item functioning (DIF) analyses using an intersectional lens (Russell & Kaplan, 2021)
- We provided an example of using intersectionality theory to inform measurement invariance testing
- We found multiple forms of evidence of *intersectional measurement invariance* of the PHQ-8 instrument across the 16 intersectional subgroups

Limitations

- Not exploring all possible intersections
 - Some intersections resulted in very small N and were not possible to evaluate
 - Only 10 Non-Hispanic Black Males with a college degree in the 30,000+ NHIS sample
 - We performed an intercategorical intersectional analysis as opposed to an intracategorical intersectional analysis (Bauer & Scheim, 2019)
 - Choice of intersections to evaluate should be driven by theoretical considerations
- Small N in some groups
 - Traditional MI testing research suggests that each group should have a sample size of at least 400 (French & Finch, 2006)
- Treated Likert-scaled items as continuous
 - Treating items as categorical (i.e., ordinal) may result in more valid inference
 - *mixmgfa* not able to handle categorical responses

Conclusions

- We need to consider whether response behavior on an instrument may vary as a function of the intersection of individuals' multiple identities
- The alignment method, mixture multiple-group factor analysis, and moderated nonlinear factor analysis are each ways to perform intersectional measurement invariance testing
 - Alignment method has benchmarks and Monte Carlo simulation evidence supports its use to validate an instrument (i.e., includes the 25% benchmark for determining whether results of scale are trustworthy across groups)
 - Mixture multiple-group factor analysis unique in its ability to find clusters of groups with invariance
 - Moderated nonlinear factor analysis was computationally intensive, but may be useful when the focus is on different item functioning
 - Flexibility in considering where different forms of noninvariance emerge across intersectional identities (e.g., in the main effects or at certain intersections, or margins, of an identities)
 - Challenging with this large-scale dataset (Bayesian estimation may be useful)
- Future research will include examining the goodness of recovery of the group factor means, factor loadings, and item intercepts across the three methods

References

Asparouhov, T., & Muthén, B. (2014). Multiple-group factor analysis alignment. Structural Equation Modeling: A Multidisciplinary Journal, 21(4), 495-508.

Bauer, G. R., & Scheim, A. I. (2019). Advancing quantitative intersectionality research methods: Intracategorical and intercategorical approaches to shared and differential constructs. Social Science & Medicine, 226, 260-262

Bešić, E. (2020). Intersectionality: A pathway towards inclusive education?. Prospects, 49(3-4), 111-122.

Cintron, D. W., Matthay, E. C., & McCoach, D. B. (2023). Testing for intersectional measurement invariance with the alignment method: Evaluation of the 8-item patient health questionnaire. Health Services Research.

Curran, P. J., McGinley, J. S., Bauer, D. J., Hussong, A. M., Burns, A., Chassin, L., ... & Zucker, R. (2014). A moderated nonlinear factor model for the development of commensurate measures in integrative data analysis. Multivariate behavioral research, 49(3), 214-231.

De Roover, K. (2021). Finding clusters of groups with measurement invariance: Unraveling intercept non-invariance with mixture multigroup factor analysis. Structural Equation Modeling: A Multidisciplinary Journal, 28(5), 663-683.

Luong, R., & Flake, J. K. (2022). Measurement invariance testing using confirmatory factor analysis and alignment optimization: A tutorial for transparent analysis planning and reporting. Psychological Methods.

Muthén, B., & Asparouhov, T. (2014). IRT studies of many groups: The alignment method. Frontiers in psychology, 5, 978.

Thank you!

<u>dwc237@cornell.edu</u>

cintrond.github.io

@cintrondw

