Monday, May 18th |
Pre-conference Workshop
Karl Jöreskog |
Tuesday, May 19th |
Keynote Address
Karl Jöreskog, Ph.D. |
Session 1.1An Empirical Test of Accountability Policy: A-F School Grades. Mwarumba Mwavita & Curt Adams.
Longitudinal Models for the Early Development of Hand Preferences. Richard A. Faldowski, George F. Michel, Iryna Babik, Julie Campbell, & Emily Marcinowski
Piecewise-Linear Multilevel Models of Sociometric Nominations over the Transition to Middle School. Richard A. Faldowski, Madelynnn D. Shell, & Heidi Gazelle
Session 1.2David Kaplan & Chansoon Lee
Bayesian Factor Analysis with Variable Selection Techniques. Zhaohua Lu, Sy-miin Chow, & Eric Loken
Session 1.3Unipolar Item Response Models. Joseph F. Lucke
Cross Classified Modeling of Dual Local Item Dependence. Chao Xie & Hong Jiao
Session 1.4An Empirical Comparison of Multiple Imputation Approaches for Treating Missing Data in Propensity Score Analyses. Jessica Montgomery, Eun Sook Kim, Jeffrey D. Kromrey, Rheta E. Lanehart, Patricia Rodriguez de Gil, Yan Wang, & Reginald Lee
Missing Covariates in Causal Inference Matching: Statistical Modeling Using Machine Learning and Evolutionary Search Algorithms. Landon Hurley
Session 1.5Simulating Data for Mixture Model Studies: Considering Measures of Data Overlap Jeffrey Harring & Junhui Liu
A Simple Simulation Technique for Non-Normal Data with Pre-Specified Kurtosis and Covariance Matrix. Ulf Henning Olsson & Njål Foldnes
Non-normal Data Simulation Using Regular Vines. Njål Foldnes & Steffen Grønneberg
Session 1.6Methodological Illustration of Multiple Group Multilevel SEM with LSA Data. Agnes Stancel-Piatak
An Evaluation of the Alignment Method for Detecting Measurement Non-invariance in Noncognitive Scales. Jessica Kay Flake & Betsy McCoach
Exploring Noninvariance in Classroom Behavior Trajectories Using Growth Mixture Modeling. Janice Kooken, D. Betsy McCoach, Sandra Chafouleas, Faith G. Miller, Megan Welsh, T. Chris Riley-Tilman, & & Noel Card
|
Session 2.1- SymposiumInnovative Developments and Applications in Latent Class Analysis. Chair: Jay Magidson
Paper 1: Goodness-of-fit of Multilevel Latent Class Models for Categorical Data. Erwin Nagelkerke, D. L. Oberski, & Jeroen Vermunt
Paper 2: Micro-macro Multilevel Analysis for Discrete Data. Margot Sijssens-Bennink, M.A. Croon, & Jeroen Vermunt
Paper 3: Divisive Latent Class Analysis Applied to Social Capital. Mattis van den Bergh, Verena Schmittmann, & Jeroen Vermunt
Paper 4: Resampling Methods for Assessing Latent Class Model Fit. Geert van Kolenburg, Joris Mulder, & Jeroen Vermunt
Session 2.2Assessing Associations and Patterns in Multi-Member Multi-Group Data. Thomas Ledermann, Myriam Rudaz, & Alexander Grob
Using Multiple Group Modeling to Test Moderators in Meta-Analysis. Alexander M. Schoemann
Using Moderated Nonlinear Factor Analysis (MNLFA) to Develop a Commensurate Measure of Alcohol Use Across Four Independent Studies. Jennifer L. Walsh, Lance Weinhardt, Seth Kalichman, & Michael Carey
Session 2.3Small Sample Robust Model Fit Criteria in Latent Growth Models with Non-Informative Dropout. Dan McNeish & Jeff Harring
Growth Modeling with Selection and Missing Data: A Shared-parameter Model for Predicting College Readiness with Interim Assessment Results. Yeow Meng Thum & Tyler Matta
Session 2.4Comparing Aspects of Data Collection to Improve Statistical Power. Andrew L. Moskowitz, Jennifer L. Krull, K. Alex Trickey, & Bruce F. Chorpita
Partially Nested Randomized Control Trials in Educational Research: Applications to a Summer Learning Program. Jonathan Schweig & John Pane
Predicting Group-Level Outcome Variables: An Empirical Comparison of Analysis Strategies. Jeffrey D. Kromrey & V. Lynn Foster-Johnson
Session 2.5A Study of Classroom Learning with a Mixed Model for Ordinal Variables and Special Emphasis on Individual Differences. Robert Cudeck
A Mode of Zero: Strategies for Education Data with Cases of Zero. Lauren Porter
|
Keynote AddressDonald Hedeker, Ph.D.
|
POSTER SESSION
1. A Rasch Analysis of Math Anxiety Scale across Cultures. Menglin Xu
2. A Bayesian method to determine intrinsic item response functions in cognitive diagnostic models. Diego A. Luna-Bazaldua & Lawrence DeCarlo
3. A Comparison of Different Methods of Zero-inflated Data Analysis. Si Yang, Lisa Harlow, Gavino Puggioni, & Colleen Redding
4. A Typology of Cyber-victimization and Traditional Victimization: A 3-Step Latent Profile Analysis. Diana Mindrila, Pamela Davis, & Lori Moore
5. Techniques for Small-Sample, Longitudinal Research: Comparing Linear Mixed Effects Models and Generalized Estimating Equations. Chelsea Muth, Karen L. Bales, Katie Hinde, Nicole Maninger, Sally P. Mendoza, & Emilio Ferrer
6. An Illustration of the Advantages of the Visual Analog Scale. Pavel Panko, Brittany K. Gorrall, Todd D. Little, Jacob D. Curtis, & Esteban Montenegro
Samara L. Rice, Mark A. Prince, Robert C. Schlauch, Joseph F. Lucke, & Gerard J. Connors
8. Assessing the Performance of Single Item Longitudinal Models over Varying Conditions. Ruben Castaneda
9. Autoregressive Latent Growth Modeling: A Bayesian Approach. Yuzhu Yang & Sarah Depaoli
10. Characterizing Conceptual Change with Latent Transition Analysis. Glen Davenport
11. Comparing forensic DNA testing outcomes for biological evidence from stranger versus non-stranger rapes: Results from the Detroit Sexual Assault Kit Action Research Project. Steven J. Pierce, Dhruv B. Sharma, & Rebecca Campbell
12. Comparing the Gamma Generalized Linear Model, Log Transformation, and Yuen-Welch for Power and Generalizability. Victoria Ng & Rob Cribbie
13. Comparing Traditional and Bayesian Approaches for Testing Mean Equivalence. Alyssa Counsell, Robert Cribbie, & Victoria Ng
14. Detecting Relations Among Dynamic Processes with Two-Occasion Data. Corinne Henk & Laura Castro-Schilo
15. Determining Necessary Sample Size for Dynamic Group Models. Wendy Christensen & Jennifer Krull
Daniel M. Smith
17. Estimating Trends in River Water Temperature at Level 3 (year), Given Variable Occasion Designs, Data Sparseness and Potential Confounders at Levels 1 And 2. Brian Gray
Julie Lorah
Maria Coman, L. Suzanne Suggs, Gisela Rots, & Emil Coman
20. Evaluation of a Bayesian Approach to Estimating Nonlinear Mixed-Effects Mixture Models. Sarfaraz Serang, Zhiyong Zhang, Jonathan Helm,, Joel S. Steele, & Kevin J. Grimm
21. How to Find Confidence Interval for CFI and RMSEA using Bootstrap. Xijuan Zhang & Victoria Savalei
22. In the Eye of the Beholder: Is Perceived Similarity a Product of the Individual or the Dyad? Sonya M. Stokes, Bobbie A. Dirr, & Paras Mehta
23. Is Multivariate Technique Necessary: Estimating the Effects of Moderated Multiple Regression Under Ols Framework. Dingjing Shi & Ji Hoon Ryoo
24. Items that Hang Together may not Change Together: Exploring Dimensions of Change in Sense of Identity. Thai Ong & Monica Erbacher
25. Making Causal Inferences Using Education Observational Data with Multilevel Data Structures. Jose M. Hernandez
26. Parental Harshness and Warmth and Cognitive Outcomes in Hispanic American, African American and European American Families. Elif Dede Yildirim & Jaipaul L. Roopnarine
27. Rasch Model Parameter Estimation via The Elastic Net. Jon-Paul Paolino
Emilie Shireman
29. The Impact of Linear Dependence on Latent Variable Modeling. Fraser Bocell
30. The New Methods for Detecting Aberrant Behavior In Educational Testing. Kaiwen Man & Yunbo Ouyang
31. Treatment of Missing Values in Classification and Regression Tree Analyses. Shu Xu, Natalie Rubinchik, & Michael F. Lorber
32. Type-I Error Rates and Power of Three Robust Chi-Square Difference Tests When Evaluating Measurement Invariance. Jordan Brace, Victoria Savalei, & Jenny Chuang
33. Variable Selection for Propenstity Score Matching on Prognostic Strata. Jiaqi Zhang & Chrispother M. Swoboda |
Wednesday, May 20th |
Session 3.1 – SymposiumMethods for Analyzing Secondary Outcomes in Public Health Case-Control Studies. Ofer Harel (Chair), Elizabeth D. Schifano, & Haim Bar
Session 3.2Introducing N-Level Structural Equations Modeling: Framework, Software and Applications. Paras D. Mehta
Session 3.3Julianne M. Edwards & W. Holmes Finch
Multidimensional Item Calibration and Plausible Value Imputation in Large-Scale Educational Assessments using the Metropolis-Hastings Robbins-Monro Algorithm. Lauren Harrell & Li Cai
Session 3.4A Methological Illustration for Regression Mixture Models: Current Issues Of Estimation Problems. Minjung Kim, Andrea Lamont, & M. Lee Van Horn
Session 3.5Reconciling Factor-Based and Composite-Based Approaches to Structural Equation Modeling. Edward E. Rigdon
|
Session 4.1- SymposiumThe “What”, “Why”, and “How” of Partial Approximate Measurement Invariance. Chair: Katherine Masyn & Julia Higdon
Paper 1: Navigating the Full-No Measurement Invariance Passage with Partial Approximate Measurement Invariance.
Paper 2: Partial Approximate Measurement Invariance in Action: Measuring Intergroup Attitudes in Europe.
Session 4.2Row Fit Derivative Clustering for Heterogeneity Analysis. Timothy R. Brick
The Method of State Space Mixures. Michael D. Hunter
Session 4.3Matthijs Koopmans
Mediational Processes in Latent Growth Curve Modeling: Investigation of the Longitudinal Effect of Technology-Based Substance Use Treatment on Drug Abstinence. Sunny Jung Kim, Lisa A. Marsch, & Haiyi Xie
Analyzing Long-duration and High-frequency Data Using the Time-varying Effect Model. Haiyi Xie, Robert E. Drake, Sunny Jung Kim, & Gregory J. McHugo
Session 4.4Detailed Effect Analysis Using Structural Equation Modeling. Axel Mayer, Lisa Dietzfelbinger, Yves Rosseel, & Rolf Steyer
Structural Equation Models for Comparing Dependent Means and Proportions. Jason T. Newsom
Session 4.5A Guide to the Application of Multilevel Structural Equation Modeling: Bayesian and Frequentist Implementations. James P. Clifton & Sarah Depaoli
Brandon LeBeau
Robust Bayesian Methods in Growth Curve Modeling. Xin Tong & Zhiyong Zhang
Session 4.6Jonathan M. Lehrfeld & Heining Cham
Robust Joint Modelling: Questioning the Distributional Assumptions. Lisa McCrink, Adele Marshall, Karen Cairns, & Damian Fogarty
Two F Approximations to the Distribution of Test Statistics in SEM. Hao Wu & Johnny Lin
Session 4.7Errors-in-variables System Identification using Structural Equation Modeling. David Kreiberg
New Variable Selection Criteria in Model Selection. Ji hoon Ryoo, Snigdhansu Chatterjee, & Dingjing Shi
|
Single Session 5.1Confirmatory Composite Analysis – Making Structural Equation Modeling Fit for Design Research. Jörg Henseler
Single Session 5.2David Kaplan & Dan Su
Group Session 5.3Estimating Latent Variable Interactions with Incomplete Exogenous Items. Heining Cham & Evgeniya Reshetnyak
Performances of Mixture Latent Moderated Structural Equations Approach. Evgeniya Reshetnyak & Heining Cham
Group Session 5.4Jay Magidson
Simultaneous Two-Way Fuzzy Clustering of Multiple Correspondence Analysis. Sunmee Kim & Heungsun Hwang
Session 5.5Emil Coman, Judith Fifield, & Monique Davis-Smith
Emil Coman & Judith Fifield
|
Session 6.1 – SymposiumApplications of Advanced Latent Variable Modeling in the Study of Reading and Motivation. Chair: Paulina Kulesz
Paper 1: Evaluating the Impact of Common Method Variance in a SEM Model of Reading Comprehension. Yusra Ahmed, David J. Francis, Jack M. Fletcher, Mary York, & Marcia A. Barnes
Paper 2: Measuring Motivation to Read Through Self-Report: New Insights Through the Application of Polytomous Item Response Models. Paulina A. Kulesz, David J. Francis, Mary York, and Chris A. Wolters
Paper 3: An Application of Explanatory Item Response Models to Study Developmental Changes in Reading and Visual Processing Skills in Grades K-2. Shiva Khalaf, Paulina A. Kulesz, Kristi L. Santi, & David J. Francis
Session 6.2 – SymposiumValidating Methods for Predicting Individual Treatment Effects. Chair: Andrea Lamont
Paper 1: An imputation-based approach for predicting individual treatment effects. Andrea Lamont, Mike Lyons, & Lee Van Horn
Paper 2: A random forest approach to predicting individual treatment effects. Mike Lyons, Andrea Lamont, & Lee Van Horn
Paper 3: Sample size requirements for imputation-based PITE. Kathleen Jocoy, Andrea Lamont, & Lee Van Horn
Session 6.3Because it Might not Make a Big Dif: Improved Differential Test Functioning Measures. David B. Flora, R. Philip Chalmers, & Alyssa Counsell
Methods for the Comparison of DIF across Assessments. Holmes Finch, Maria Finch, & Brian French
Terrence D. Jorgensen, Benjamin A. Kite, Po-Yi Chen, & Stephen D. Short
Session 6.4Checking Robustness of Longitudinal Results Across Two Types of Gain Scores. Robert E. Larzelere, Mwarumba Mwavita, Taren Swindel, Ronald Cox, Jr., & Isaac Washburn
Three Steps Toward Improving Causally Relevant Conclusions from Longitudinal Studies. Robert E. Larzelere, Ronald B. Cox, Jr., & Taren Swindle
Session 6.5“To Parcel or Not to Parcel” 2.0: Parceling Indicators in Latent Class Models. Katherine Masyn & Todd Little
A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation. Ji Yeh Choi & Heungsun Hwang
Feasible Sample Size Determination in Confirmatory Factor Analysis Jennifer Koran
Session 6.6Confidence Sets and Exchangeable Weights in Multiple Linear Regression. Jolynn Pek & R Philip Chalmers
OLS and HCSE Estimation in Linear Models: An Investigation of Non-normality, Heteroscedasticity, and Measurement Error. Lynn Foster-Johnson & Jeffrey D. Kromrey
|
Keynote Address
Thomas Cook, Ph.D. |
Thursday, May 21st |
Post-conference Workshop Multilevel Structural Equation Modeling using xxM Paras Mehta University of Houston
|